611 research outputs found

    A verifiable secret sharing scheme based on the chinese remainder theorem

    Get PDF
    In this paper, we investigate how to achieve verifiable secret sharing (VSS) schemes by using the Chinese Remainder Theorem (CRT). We first show that two schemes proposed earlier are not secure by an attack where the dealer is able to distribute inconsistent shares to the users. Then we propose a new VSS scheme based on the CRT and prove its security. Using the proposed VSS scheme, we develop a joint random secret sharing (JRSS) protocol, which, to the best of our knowledge, is the first JRSS protocol based on the CRT. © 2008 Springer Berlin Heidelberg

    Secret Sharing Extensions based on the Chinese Remainder Theorem

    Get PDF
    In this paper, we investigate how to achieve verifiable secret sharing (VSS) schemes by using the Chinese Remainder Theorem (CRT). We first show that two schemes proposed earlier are not secure from an attack where the dealer is able to distribute inconsistent shares to the users. Then we propose a new VSS scheme based on the CRT and prove its security. Using the proposed VSS scheme, we develop joint random secret sharing~(JRSS) and proactive SSS protocols, which, to the best of our knowledge, are the first secure protocols of their kind based on the CRT

    Ideal Tightly Couple (t,m,n) Secret Sharing

    Full text link
    As a fundamental cryptographic tool, (t,n)-threshold secret sharing ((t,n)-SS) divides a secret among n shareholders and requires at least t, (t<=n), of them to reconstruct the secret. Ideal (t,n)-SSs are most desirable in security and efficiency among basic (t,n)-SSs. However, an adversary, even without any valid share, may mount Illegal Participant (IP) attack or t/2-Private Channel Cracking (t/2-PCC) attack to obtain the secret in most (t,n)-SSs.To secure ideal (t,n)-SSs against the 2 attacks, 1) the paper introduces the notion of Ideal Tightly cOupled (t,m,n) Secret Sharing (or (t,m,n)-ITOSS ) to thwart IP attack without Verifiable SS; (t,m,n)-ITOSS binds all m, (m>=t), participants into a tightly coupled group and requires all participants to be legal shareholders before recovering the secret. 2) As an example, the paper presents a polynomial-based (t,m,n)-ITOSS scheme, in which the proposed k-round Random Number Selection (RNS) guarantees that adversaries have to crack at least symmetrical private channels among participants before obtaining the secret. Therefore, k-round RNS enhances the robustness of (t,m,n)-ITOSS against t/2-PCC attack to the utmost. 3) The paper finally presents a generalized method of converting an ideal (t,n)-SS into a (t,m,n)-ITOSS, which helps an ideal (t,n)-SS substantially improve the robustness against the above 2 attacks
    corecore