113 research outputs found

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Ultra-Wideband CMOS Transceiver Front-End for Bio-Medical Radar Sensing

    Get PDF
    Since the Federal Communication Commission released the unlicensed 3.1-10.6 GHz frequency band for commercial use in early 2002, the ultra wideband (UWB) has developed from an emerging technology into a mainstream research area. The UWB technology, which utilizes wide spectrum, opens a new era of possibility for practical applications in radar sensing, one of which is the human vital sign monitoring. The aim of this thesis is to study and research the possibility of a new generation humanrespiration monitoring sensor using UWB radar technology and to develop a new prototype of UWB radar sensor for system-on-chip solutions in CMOS technology. In this thesis, a lowpower Gaussian impulse UWB mono-static radar transceiver architecture is presented. The UWB Gaussian pulse transmitter and receiver are implemented and fabricated using 90nm CMOS technology. Since the energy of low order Gaussian pulse is mostly condensed at lower frequency, in order to transmit the pulse in a very efficient way, higher order Gaussian derivative pulses are desired as the baseband signal. This motivates the advancement of the design into UWB high-order pulse transmitter. Both the Gaussian impulse UWB transmitter and Gaussian higher-order impulse UWB transmitter take the low-power and high-speed advantage of digital circuit to generate different waveforms. The measurement results are analyzed and discussed. This thesis also presents a low-power UWB mono-static radar transceiver architecture exploiting the full benefit of UWB bandwidth in radar sensing applications. The transceiver includes a full UWB band transmitter, an UWB receiver front-end, and an on-chip diplexer. The non-coherent UWB transmitter generates pulse modulated baseband signals at different carrier frequencies within the designated 3-10 GHz band using a digitally controlled pulse generator. The test shows the proposed radar transceiver can detect the human respiration pattern within 50 cm distance. The applications of this UWB radar sensing solution in commercialized standard CMOS technology include constant breathing pattern monitoring for gated radiation therapy, realtime monitoring of patients, and any other breathing monitoring. The research paves the way to wireless technology integration with health care and bio-sensor network

    A 0.18µm CMOS UWB wireless transceiver for medical sensing applications

    Get PDF
    Recently, there is a new trend of demand of a biomedical device that can continuously monitor patient’s vital life index such as heart rate variability (HRV) and respiration rate. This desired device would be compact, wearable, wireless, networkable and low-power to enable proactive home monitoring of vital signs. This device should have a radar sensor portion and a wireless communication link all integrated in one small set. The promising technology that can satisfy these requirements is the impulse radio based Ultra-wideband (IR-UWB) technology. Since Federal Communications Commission (FCC) released the 3.1GHz-10.6GHz frequency band for UWB applications in 2002 [1], IR-UWB has received significant attention for applications in target positioning and wireless communications. IR-UWB employs extremely narrow Gaussian monocycle pulses or any other forms of short RF pulses to represent information. In this project, an integrated wireless UWB transceiver for the 3.1GHz-10.6GHz IR-UWB medical sensor was developed in the 0.18µm CMOS technology. This UWB transceiver can be employed for both radar sensing and communication purposes. The transceiver applies the On-Off Keying (OOK) modulation scheme to transmit short Gaussian pulse signals. The transmitter output power level is adjustable. The fully integrated UWB transceiver occupies a core area of 0.752mm^2 and the total die area of 1.274mm^2 with the pad ring inserted. The transceiver was simulated with overall power consumption of 40mW for radar sensing. The receiver is very sensitive to weak signals with a sensitivity of -73.01dBm. The average power of a single pulse is 9.8µW. The pulses are not posing any harm to human tissues. The sensing resolution and the target positioning precision are presumably sufficient for heart movement detection purpose in medical applications. This transceiver can also be used for high speed wireless data communications. The data transmission rate of 200 Mbps was achieved with an overall power consumption of 57mW. A combination of sensing and communications can be used to build a low power sensor

    UWB pulse generation for GPR applications

    Get PDF
    In this work, we present a low-complexity, and low cost ultra-wideband (UWB) pulse generators for GPR applications. Here we have implemented two UWB pulse generator circuits. The first pulse generator uses a simple common emitter amplifier followed by RC high-pass filter to generate the Gaussian pulse directly. The circuit provides a Gaussian pulse when activated by a square wave of an external trigger signal and also the pulse width duration tunability by varying the frequency. Using this circuit topology we can achieve 200ns Gaussian pulse. The second UWB pulse generator is based on the avalanche transistor. This pulse generator also provides a Gaussian pulse when activated by a square wave of an external trigger signal. And when activated with 3 kHz square wave, it generates 11ns duration Gaussian pulse

    Design of an Ultra Low Power RFCMOS Transceiver for a Self-Powered IoT Node

    Get PDF
    In this thesis a transceiver characterized to consume ultra low power based in RFCMOS for a self-powered Internet of Things node is studied and designed. The transceiver consists in a simple Non-Coherent system, which means that the signal is picked up by the receiver based on energy detection, as a result it is one of the simplest existing transceivers once it does not need in the transmitter a complex pulse generator and certainly in the receiver as well. It is composed by an OOK modulator, a pulse generator that will determine the centre frequency and a driver amplifier connected to a 50W antenna for the transmitter. While in the receiver there is as first block a Low Noise Amplifier, a self-mixer that will prepare the signal for the integrator and a comparator working as a energy detector. The UWB transceiver will be able to operate with a centre frequency of 4.5 GHz and a bandwidth of at least 500 MHz. It is critical to notice that the system is consuming a value of 96 mW for the power and accomplishing the power spectrum density -43 dBm/MHz using an OOK modulation technique. The entire system was implemented with standard 130nm CMOS technology

    Design of Pulse Generator in 180nm Technology for GPR Applications

    Get PDF
    In this work, we present a low-complexity and low cost pulse generator in 180nm technology for ground penetrating ultra-wideband (UWB) radar system applications. Here I have implemented an UWB pulse generator circuit. A UWB pulse generator is a method introduced in communication system to simplify the data transmission and remove disadvantages that occurs in other systems. This generator generates a Gaussian pulse for a small period of time of the order of some nanoseconds. As UWB pulses are generated for a short time, hence no carrier signal is required to send a base band or message signal. So power loss due to carrier signal doesn’t exist at all. These pulses are very high in frequency; hence it has very less chance to be got affected by noise. This pulse generator uses a delay generator along with a Gilbert XOR cell for generating a Gaussian pulse which can be shaped by using a FIR filter, and finally a Gaussian mono cycle pulse is observed at the output which has a pulse width of 97ps thereby give rise to a bandwidth of 10.3 GHz which meet the FCC requirements. The pulse generator comprises of three cascaded delay blocks, a XOR block, and a FIR filter. The interpolation delay blocks uses voltage for adjusting the delay time by the control of the gains of each path. By adjusting the delay time, pulse generator can achieve the required frequency. The XOR gate is implemented using a Gilbert cell. When the two signals given as input have opposite voltage levels at a given time, the XOR gate creates a pulse. After the XOR gate, a Gaussian pulse is generated and then it goes through the FIR filter to shape it to a Gaussian mono cycle pulse. The design and simulation of the pulse generator was performed using the Cadence UMC tool in 180nm CMOS process

    Smart Technology for Early Crack Detection of Concrete Wall

    Get PDF
    Due to the ever growing human needs, many multi storied buildings, large sky scrapers and very large bridges are being developed. Due to some extreme environmental conditions there occur minute cracks inside the wall. These cracks, with time, protrude towards the end of pillar or wall, finally causing the buildings or bridges to collapse. Identifying these cracks in the very early stage (just after formation inside the pillar) can help us to get rid of disaster and as well as necessary measures
    corecore