123 research outputs found

    Advanced methodologies for reliability-based design optimization and structural health prognostics

    Get PDF
    Failures of engineered systems can lead to significant economic and societal losses. To minimize the losses, reliability must be ensured throughout the system's lifecycle in the presence of manufacturing variability and uncertain operational conditions. Many reliability-based design optimization (RBDO) techniques have been developed to ensure high reliability of engineered system design under manufacturing variability. Schedule-based maintenance, although expensive, has been a popular method to maintain highly reliable engineered systems under uncertain operational conditions. However, so far there is no cost-effective and systematic approach to ensure high reliability of engineered systems throughout their lifecycles while accounting for both the manufacturing variability and uncertain operational conditions. Inspired by an intrinsic ability of systems in ecology, economics, and other fields that is able to proactively adjust their functioning to avoid potential system failures, this dissertation attempts to adaptively manage engineered system reliability during its lifecycle by advancing two essential and co-related research areas: system RBDO and prognostics and health management (PHM). System RBDO ensures high reliability of an engineered system in the early design stage, whereas capitalizing on PHM technology enables the system to proactively avoid failures in its operation stage. Extensive literature reviews in these areas have identified four key research issues: (1) how system failure modes and their interactions can be analyzed in a statistical sense; (2) how limited data for input manufacturing variability can be used for RBDO; (3) how sensor networks can be designed to effectively monitor system health degradation under highly uncertain operational conditions; and (4) how accurate and timely remaining useful lives of systems can be predicted under highly uncertain operational conditions. To properly address these key research issues, this dissertation lays out four research thrusts in the following chapters: Chapter 3 - Complementary Intersection Method for System Reliability Analysis, Chapter 4 - Bayesian Approach to RBDO, Chapter 5 - Sensing Function Design for Structural Health Prognostics, and Chapter 6 - A Generic Framework for Structural Health Prognostics. Multiple engineering case studies are presented to demonstrate the feasibility and effectiveness of the proposed RBDO and PHM techniques for ensuring and improving the reliability of engineered systems within their lifecycles

    High Voltage Insulating Materials-Current State and Prospects

    Get PDF
    Studies on new solutions in the field of high-voltage insulating materials are presented in this book. Most of these works concern liquid insulation, especially biodegradable ester fluids; however, in a few cases, gaseous and solid insulation are also considered. Both fundamental research as well as research related to industrial applications are described. In addition, experimental techniques aimed at possibly finding new ways of analysing the experimental data are proposed to test dielectrics

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Application of variational mode decomposition in vibration analysis of machine components

    Get PDF
    Monitoring and diagnosis of machinery in maintenance are often undertaken using vibration analysis. The machine vibration signal is invariably complex and diverse, and thus useful information and features are difficult to extract. Variational mode decomposition (VMD) is a recent signal processing method that able to extract some of important features from machine vibration signal. The performance of the VMD method depends on the selection of its input parameters, especially the mode number and balancing parameter (also known as quadratic penalty term). However, the current VMD method is still using a manual effort to extract the input parameters where it subjects to interpretation of experienced experts. Hence, machine diagnosis becomes time consuming and prone to error. The aim of this research was to propose an automated parameter selection method for selecting the VMD input parameters. The proposed method consisted of two-stage selections where the first stage selection was used to select the initial mode number and the second stage selection was used to select the optimized mode number and balancing parameter. A new machine diagnosis approach was developed, named as VMD Differential Evolution Algorithm (VMDEA)-Extreme Learning Machine (ELM). Vibration signal datasets were then reconstructed using VMDEA and the multi-domain features consisted of time-domain, frequency-domain and multi-scale fuzzy entropy were extracted. It was demonstrated that the VMDEA method was able to reduce the computational time about 14% to 53% as compared to VMD-Genetic Algorithm (GA), VMD-Particle Swarm Optimization (PSO) and VMD-Differential Evolution (DE) approaches for bearing, shaft and gear. It also exhibited a better convergence with about two to nine less iterations as compared to VMD-GA, VMD-PSO and VMD-DE for bearing, shaft and gear. The VMDEA-ELM was able to illustrate higher classification accuracy about 11% to 20% than Empirical Mode Decomposition (EMD)-ELM, Ensemble EMD (EEMD)-ELM and Complimentary EEMD (CEEMD)-ELM for bearing shaft and gear. The bearing datasets from Case Western Reserve University were tested with VMDEA-ELM model and compared with Support Vector Machine (SVM)-Dempster-Shafer (DS), EEMD Optimal Mode Multi-scale Fuzzy Entropy Fault Diagnosis (EOMSMFD), Wavelet Packet Transform (WPT)-Local Characteristic-scale Decomposition (LCD)- ELM, and Arctangent S-shaped PSO least square support vector machine (ATSWPLM) models in term of its classification accuracy. The VMDEA-ELM model demonstrates better diagnosis accuracy with small differences between 2% to 4% as compared to EOMSMFD and WPT-LCD-ELM but less diagnosis accuracy in the range of 4% to 5% as compared to SVM-DS and ATSWPLM. The diagnosis approach VMDEA-ELM was also able to provide faster classification performance about 6 40 times faster than Back Propagation Neural Network (BPNN) and Support Vector Machine (SVM). This study provides an improved solution in determining an optimized VMD parameters by using VMDEA. It also demonstrates a more accurate and effective diagnostic approach for machine maintenance using VMDEA-ELM

    Wind turbine drivetrains:State-of-the-art technologies and future development trends

    Get PDF
    This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the system that converts kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. Offshore development and digitalization are also a focal point in this study. Drivetrain in this context includes the whole power conversion system: main bearing, shafts, gearbox, generator and power converter. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps. The main challenges in drivetrain research identified in this paper include drivetrain dynamic responses in large or floating turbines, aerodynamic and farm control effects, use of rare-earth material in generators, improving reliability through prognostics, and use of advances in digitalization. These challenges illustrate the multidisciplinary aspect of wind turbine drivetrains, which emphasizes the need for more interdisciplinary research and collaboration

    Artificial Intelligence Supported EV Electric Powertrain for Safety Improvement

    Get PDF
    As an environmentally friendly transport option, electric vehicles (EVs) are endowed with the characteristics of low fossil energy consumption and low pollutant emissions. In today's growing market share of EVs, the safety and reliability of the powertrain system will be directly related to the safety of human life. Reliability problems of EV powertrains may occur in any power electronic (PE) component and mechanical part, both sudden and cumulative. These faults in different locations and degrees will continuously threaten the life of drivers and pedestrians, bringing irreparable consequences. Therefore, monitoring and predicting the real-time health status of EV powertrain is a high-priority, arduous and challenging task. The purposes of this study are to develop AI-supported effective safety improvement techniques for EV powertrains. In the first place, a literature review is carried out to illustrate the up-to-date AI applications for solving condition monitoring and fault detection issues of EV powertrains, where recent case studies between conventional methods and AI-based methods in EV applications are compared and analysed. On this ground this study, then, focuses on the theories and techniques concerning this topic so as to tackle different challenges encountered in the actual applications. In detail, first, as for diagnosing the bearing system in the earlier fault period, a novel inferable deep distilled attention network is designed to detect multiple bearing faults. Second, a deep learning and simulation driven approach that combines the domain-adversarial neural network and the lumped-parameter thermal network (LPTN) is proposed for achieve IPMSM permanent magnet temperature estimation work. Finally, to ensure the use safety of the IGBT module, deep learning -based IGBT modules’ double pulse test (DPT) efficiency enhancement is proposed and achieved via multimodal fusion networks and graph convolution networks

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed
    • 

    corecore