20,152 research outputs found

    Comparison of Shape Derivatives Using CutFEM for Ill-posed Bernoulli Free Boundary Problem

    Get PDF
    In this paper we study and compare three types of shape derivatives for free boundary identification problems. The problem takes the form of a severely ill-posed Bernoulli problem where only the Dirichlet condition is given on the free (unknown) boundary, whereas both Dirichlet and Neumann conditions are available on the fixed (known) boundary. Our framework resembles the classical shape optimization method in which a shape dependent cost functional is minimized among the set of admissible domains. The position of the domain is defined implicitly by the level set function. The steepest descent method, based on the shape derivative, is applied for the level set evolution. For the numerical computation of the gradient, we apply the Cut Finite Element Method (CutFEM), that circumvents meshing and re-meshing, without loss of accuracy in the approximations of the involving partial differential models. We consider three different shape derivatives. The first one is the classical shape derivative based on the cost functional with pde constraints defined on the continuous level. The second shape derivative is similar but using a discretized cost functional that allows for the embedding of CutFEM formulations directly in the formulation. Different from the first two methods, the third shape derivative is based on a discrete formulation where perturbations of the domain are built into the variational formulation on the unperturbed domain. This is realized by using the so-called boundary value correction method that was originally introduced to allow for high order approximations to be realized using low order approximation of the domain. The theoretical discussion is illustrated with a series of numerical examples showing that all three approaches produce similar result on the proposed Bernoulli problem

    C1-continuous space-time discretization based on Hamilton's law of varying action

    Full text link
    We develop a class of C1-continuous time integration methods that are applicable to conservative problems in elastodynamics. These methods are based on Hamilton's law of varying action. From the action of the continuous system we derive a spatially and temporally weak form of the governing equilibrium equations. This expression is first discretized in space, considering standard finite elements. The resulting system is then discretized in time, approximating the displacement by piecewise cubic Hermite shape functions. Within the time domain we thus achieve C1-continuity for the displacement field and C0-continuity for the velocity field. From the discrete virtual action we finally construct a class of one-step schemes. These methods are examined both analytically and numerically. Here, we study both linear and nonlinear systems as well as inherently continuous and discrete structures. In the numerical examples we focus on one-dimensional applications. The provided theory, however, is general and valid also for problems in 2D or 3D. We show that the most favorable candidate -- denoted as p2-scheme -- converges with order four. Thus, especially if high accuracy of the numerical solution is required, this scheme can be more efficient than methods of lower order. It further exhibits, for linear simple problems, properties similar to variational integrators, such as symplecticity. While it remains to be investigated whether symplecticity holds for arbitrary systems, all our numerical results show an excellent long-term energy behavior.Comment: slightly condensed the manuscript, added references, numerical results unchange
    corecore