5,994 research outputs found

    A computational comparison of two simplicial decomposition approaches for the separable traffic assignment problems : RSDTA and RSDVI

    Get PDF
    Draft pel 4th Meeting del Euro Working Group on Transportation (Newcastle 9-11 setembre de 1.996)The class of simplicial decomposition methods has shown to constitute efficient tools for the solution of the variational inequality formulation of the general traffic assignment problem. The paper presents a particular implementation of such an algorithm, called RSDVI, and a restricted simplicial decomposition algorithm, developed adhoc for diagonal, separable, problems named RSDTA. Both computer codes are compared for large scale separable traffic assignment problems. Some meaningful figures are shown for general problems with several levels of asymmetry.Preprin

    The 2+12+1 convex hull of a finite set

    Full text link
    We study R2R\mathbb{R}^2\oplus\mathbb{R}-separately convex hulls of finite sets of points in R3\mathbb{R}^3, as introduced in \cite{KirchheimMullerSverak2003}. When R3\mathbb{R}^3 is considered as a certain subset of 3×23\times 2 matrices, this notion of convexity corresponds to rank-one convex convexity KrcK^{rc}. If R3\mathbb{R}^3 is identified instead with a subset of 2×32\times 3 matrices, it actually agrees with the quasiconvex hull, due to a recent result \cite{HarrisKirchheimLin18}. We introduce "2+12+1 complexes", which generalize TnT_n constructions. For a finite set KK, a "2+12+1 KK-complex" is a 2+12+1 complex whose extremal points belong to KK. The "2+12+1-complex convex hull of KK", KccK^{cc}, is the union of all 2+12+1 KK-complexes. We prove that KccK^{cc} is contained in the 2+12+1 convex hull KrcK^{rc}. We also consider outer approximations to 2+12+1 convexity based in the locality theorem \cite[4.7]{Kirchheim2003}. Starting with a crude outer approximation we iteratively chop off "DD-prisms". For the examples in \cite{KirchheimMullerSverak2003}, and many others, this procedure reaches a "2+12+1 KK-complex" in a finite number of steps, and thus computes the 2+12+1 convex hull. We show examples of finite sets for which this procedure does not reach the 2+12+1 convex hull in finite time, but we show that a sequence of outer approximations built with DD-prisms converges to a 2+12+1 KK-complex. We conclude that KrcK^{rc} is always a "2+12+1 KK-complex", which has interesting consequences
    corecore