137 research outputs found

    Variational message passing for online polynomial NARMAX identification

    Get PDF
    We propose a variational Bayesian inference procedure for online nonlinear system identification. For each output observation, a set of parameter posterior distributions is updated, which is then used to form a posterior predictive distribution for future outputs. We focus on the class of polynomial NARMAX models, which we cast into probabilistic form and represent in terms of a Forney-style factor graph. Inference in this graph is efficiently performed by a variational message passing algorithm. We show empirically that our variational Bayesian estimator outperforms an online recursive least-squares estimator, most notably in small sample size settings and low noise regimes, and performs on par with an iterative least-squares estimator trained offline.Comment: 6 pages, 4 figures. Accepted to the American Control Conference 202

    Learning Deep Input-Output Stable Dynamics

    Full text link
    Learning stable dynamics from observed time-series data is an essential problem in robotics, physical modeling, and systems biology. Many of these dynamics are represented as an inputs-output system to communicate with the external environment. In this study, we focus on input-output stable systems, exhibiting robustness against unexpected stimuli and noise. We propose a method to learn nonlinear systems guaranteeing the input-output stability. Our proposed method utilizes the differentiable projection onto the space satisfying the Hamilton-Jacobi inequality to realize the input-output stability. The problem of finding this projection can be formulated as a quadratic constraint quadratic programming problem, and we derive the particular solution analytically. Also, we apply our method to a toy bistable model and the task of training a benchmark generated from a glucose-insulin simulator. The results show that the nonlinear system with neural networks by our method achieves the input-output stability, unlike naive neural networks. Our code is available at https://github.com/clinfo/DeepIOStability.Comment: Accepted in NeurIPS 202

    Gradient-based particle filter algorithm for an ARX model with nonlinear communication output

    Get PDF
    A stochastic gradient (SG)-based particle filter (SG-PF) algorithm is developed for an ARX model with nonlinear communication output in this paper. This ARX model consists of two submodels, one is a linear ARX model and the other is a nonlinear output model. The process outputs (outputs of the linear submodel) transmitted over a communication channel are unmeasurable, while the communication outputs (outputs of the nonlinear submodel) are available, and both of the twotype outputs are contaminated by white noises. Based on the rich input data and the available communication output data, a SG-PF algorithm is proposed to estimate the unknown process outputs and parameters of the ARX model. Furthermore, a direct weight optimization method and the Epanechnikov kernel method are extended to modify the particle filter when the measurement noise is a Gaussian noise with unknown variance and the measurement noise distribution is unknown. The simulation results demonstrate that the SG-PF algorithm is effective

    A comprehensive expectation identification framework for multirate time-delayed systems

    Get PDF
    The expectation maximization (EM) algorithm has been extensively used to solve system identification problems with hidden variables. It needs to calculate a derivative equation and perform a matrix inversion in the EM-M step. The equations related to the EM algorithm may be unsolvable for some complex nonlinear systems, and the matrix inversion has heavy computational costs for large-scale systems. This article provides two expectation-based algorithms with the aim of constructing a comprehensive expectation framework concerning different kinds of time-delayed systems: 1) for a small-scale linear system, the classical EM algorithm can quickly obtain the parameter and time-delay estimates; 2) for a complex nonlinear system with low order, the proposed expectation gradient descent algorithm can avoid derivative function calculation; 3) for a large-scale system, the proposed expectation multidirection algorithm does not require eigenvalue calculation and has less computational costs. These two algorithms are developed based on the gradient descent and multidirection methods. Under such an expectation framework, different kinds of models are identified on a case-by-case basis. The convergence analysis and simulation examples show the effectiveness of the algorithms

    Data driven discovery of cyber physical systems

    Get PDF
    Cyber-physical systems embed software into the physical world. They appear in a wide range of applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems have proved resistant to modeling due to their intrinsic complexity arising from the combination of physical and cyber components and the interaction between them. This study proposes a general framework for discovering cyber-physical systems directly from data. The framework involves the identification of physical systems as well as the inference of transition logics. It has been applied successfully to a number of real-world examples. The novel framework seeks to understand the underlying mechanism of cyber-physical systems as well as make predictions concerning their state trajectories based on the discovered models. Such information has been proven essential for the assessment of the performance of cyber- physical systems; it can potentially help debug in the implementation procedure and guide the redesign to achieve the required performance

    Increasing the robustness of autonomous systems to hardware degradation using machine learning

    Get PDF
    Autonomous systems perform predetermined tasks (missions) with minimum supervision. In most applications, the state of the world changes with time. Sensors are employed to measure part or whole of the world’s state. However, sensors often fail amidst operation; feeding as such decision-making with wrong information about the world. Moreover, hardware degradation may alter dynamic behaviour, and subsequently the capabilities, of an autonomous system; rendering the original mission infeasible. This thesis applies machine learning to yield powerful and robust tools that can facilitate autonomy in modern systems. Incremental kernel regression is used for dynamic modelling. Algorithms of this sort are easy to train and are highly adaptive. Adaptivity allows for model adjustments, whenever the environment of operation changes. Bayesian reasoning provides a rigorous framework for addressing uncertainty. Moreover, using Bayesian Networks, complex inference regarding hardware degradation can be answered. Specifically, adaptive modelling is combined with Bayesian reasoning to yield recursive estimation algorithms that are robust to sensor failures. Two solutions are presented by extending existing recursive estimation algorithms from the robotics literature. The algorithms are deployed on an underwater vehicle and the performance is assessed in real-world experiments. A comparison against standard filters is also provided. Next, the previous algorithms are extended to consider sensor and actuator failures jointly. An algorithm that can detect thruster failures in an Autonomous Underwater Vehicle has been developed. Moreover, the algorithm adapts the dynamic model online to compensate for the detected fault. The performance of this algorithm was also tested in a real-world application. One step further than hardware fault detection, prognostics predict how much longer can a particular hardware component operate normally. Ubiquitous sensors in modern systems render data-driven prognostics a viable solution. However, training is based on skewed datasets; datasets where the samples from the faulty region of operation are much fewer than the ones from the healthy region of operation. This thesis presents a prognostic algorithm that tackles the problem of imbalanced (skewed) datasets
    corecore