1,819 research outputs found

    Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted Data

    Full text link
    We propose a new probabilistic method for unsupervised recovery of corrupted data. Given a large ensemble of degraded samples, our method recovers accurate posteriors of clean values, allowing the exploration of the manifold of possible reconstructed data and hence characterising the underlying uncertainty. In this setting, direct application of classical variational methods often gives rise to collapsed densities that do not adequately explore the solution space. Instead, we derive our novel reduced entropy condition approximate inference method that results in rich posteriors. We test our model in a data recovery task under the common setting of missing values and noise, demonstrating superior performance to existing variational methods for imputation and de-noising with different real data sets. We further show higher classification accuracy after imputation, proving the advantage of propagating uncertainty to downstream tasks with our model.Comment: 8+12 page

    Manifold Relevance Determination

    Full text link
    In this paper we present a fully Bayesian latent variable model which exploits conditional nonlinear(in)-dependence structures to learn an efficient latent representation. The latent space is factorized to represent shared and private information from multiple views of the data. In contrast to previous approaches, we introduce a relaxation to the discrete segmentation and allow for a "softly" shared latent space. Further, Bayesian techniques allow us to automatically estimate the dimensionality of the latent spaces. The model is capable of capturing structure underlying extremely high dimensional spaces. This is illustrated by modelling unprocessed images with tenths of thousands of pixels. This also allows us to directly generate novel images from the trained model by sampling from the discovered latent spaces. We also demonstrate the model by prediction of human pose in an ambiguous setting. Our Bayesian framework allows us to perform disambiguation in a principled manner by including latent space priors which incorporate the dynamic nature of the data.Comment: ICML201

    Dropout Inference in Bayesian Neural Networks with Alpha-divergences

    Full text link
    To obtain uncertainty estimates with real-world Bayesian deep learning models, practical inference approximations are needed. Dropout variational inference (VI) for example has been used for machine vision and medical applications, but VI can severely underestimates model uncertainty. Alpha-divergences are alternative divergences to VI's KL objective, which are able to avoid VI's uncertainty underestimation. But these are hard to use in practice: existing techniques can only use Gaussian approximating distributions, and require existing models to be changed radically, thus are of limited use for practitioners. We propose a re-parametrisation of the alpha-divergence objectives, deriving a simple inference technique which, together with dropout, can be easily implemented with existing models by simply changing the loss of the model. We demonstrate improved uncertainty estimates and accuracy compared to VI in dropout networks. We study our model's epistemic uncertainty far away from the data using adversarial images, showing that these can be distinguished from non-adversarial images by examining our model's uncertainty
    • …
    corecore