6,505 research outputs found

    Variational inference for medical image segmentation

    Get PDF
    Variational inference techniques are powerful methods for learning probabilistic models and provide significant advantages over maximum likelihood (ML) or maximum a posteriori (MAP) approaches. Nevertheless they have not yet been fully exploited for image processing applications. In this paper we present a variational Bayes (VB) approach for image segmentation. We aim to show that VB provides a framework for generalising existing segmentation algorithms that rely on an expectation–maximisation formulation, while increasing their robustness and computational stability. We also show how optimal model complexity can be automatically determined in a variational setting, as opposed to ML frameworks which are intrinsically prone to overfitting. Finally, we demonstrate how suitable intensity priors, that can be used in combination with the presented algorithm, can be learned from large imaging data sets by adopting an empirical Bayes approach

    Task adapted reconstruction for inverse problems

    Full text link
    The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation

    Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation

    Full text link
    We consider the problem of segmenting a biomedical image into anatomical regions of interest. We specifically address the frequent scenario where we have no paired training data that contains images and their manual segmentations. Instead, we employ unpaired segmentation images to build an anatomical prior. Critically these segmentations can be derived from imaging data from a different dataset and imaging modality than the current task. We introduce a generative probabilistic model that employs the learned prior through a convolutional neural network to compute segmentations in an unsupervised setting. We conducted an empirical analysis of the proposed approach in the context of structural brain MRI segmentation, using a multi-study dataset of more than 14,000 scans. Our results show that an anatomical prior can enable fast unsupervised segmentation which is typically not possible using standard convolutional networks. The integration of anatomical priors can facilitate CNN-based anatomical segmentation in a range of novel clinical problems, where few or no annotations are available and thus standard networks are not trainable. The code is freely available at http://github.com/adalca/neuron.Comment: Presented at CVPR 2018. IEEE CVPR proceedings pp. 9290-929

    A cross-center smoothness prior for variational Bayesian brain tissue segmentation

    Full text link
    Suppose one is faced with the challenge of tissue segmentation in MR images, without annotators at their center to provide labeled training data. One option is to go to another medical center for a trained classifier. Sadly, tissue classifiers do not generalize well across centers due to voxel intensity shifts caused by center-specific acquisition protocols. However, certain aspects of segmentations, such as spatial smoothness, remain relatively consistent and can be learned separately. Here we present a smoothness prior that is fit to segmentations produced at another medical center. This informative prior is presented to an unsupervised Bayesian model. The model clusters the voxel intensities, such that it produces segmentations that are similarly smooth to those of the other medical center. In addition, the unsupervised Bayesian model is extended to a semi-supervised variant, which needs no visual interpretation of clusters into tissues.Comment: 12 pages, 2 figures, 1 table. Accepted to the International Conference on Information Processing in Medical Imaging (2019

    Knowing what you know in brain segmentation using Bayesian deep neural networks

    Full text link
    In this paper, we describe a Bayesian deep neural network (DNN) for predicting FreeSurfer segmentations of structural MRI volumes, in minutes rather than hours. The network was trained and evaluated on a large dataset (n = 11,480), obtained by combining data from more than a hundred different sites, and also evaluated on another completely held-out dataset (n = 418). The network was trained using a novel spike-and-slab dropout-based variational inference approach. We show that, on these datasets, the proposed Bayesian DNN outperforms previously proposed methods, in terms of the similarity between the segmentation predictions and the FreeSurfer labels, and the usefulness of the estimate uncertainty of these predictions. In particular, we demonstrated that the prediction uncertainty of this network at each voxel is a good indicator of whether the network has made an error and that the uncertainty across the whole brain can predict the manual quality control ratings of a scan. The proposed Bayesian DNN method should be applicable to any new network architecture for addressing the segmentation problem.Comment: Submitted to Frontiers in Neuroinformatic
    • …
    corecore