1,192 research outputs found

    The Discrete Infinite Logistic Normal Distribution

    Full text link
    We present the discrete infinite logistic normal distribution (DILN), a Bayesian nonparametric prior for mixed membership models. DILN is a generalization of the hierarchical Dirichlet process (HDP) that models correlation structure between the weights of the atoms at the group level. We derive a representation of DILN as a normalized collection of gamma-distributed random variables, and study its statistical properties. We consider applications to topic modeling and derive a variational inference algorithm for approximate posterior inference. We study the empirical performance of the DILN topic model on four corpora, comparing performance with the HDP and the correlated topic model (CTM). To deal with large-scale data sets, we also develop an online inference algorithm for DILN and compare with online HDP and online LDA on the Nature magazine, which contains approximately 350,000 articles.Comment: This paper will appear in Bayesian Analysis. A shorter version of this paper appeared at AISTATS 2011, Fort Lauderdale, FL, US

    Hierarchical relational models for document networks

    Full text link
    We develop the relational topic model (RTM), a hierarchical model of both network structure and node attributes. We focus on document networks, where the attributes of each document are its words, that is, discrete observations taken from a fixed vocabulary. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predict words within them. We derive efficient inference and estimation algorithms based on variational methods that take advantage of sparsity and scale with the number of links. We evaluate the predictive performance of the RTM for large networks of scientific abstracts, web documents, and geographically tagged news.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS309 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Joint Modeling of Topics, Citations, and Topical Authority in Academic Corpora

    Full text link
    Much of scientific progress stems from previously published findings, but searching through the vast sea of scientific publications is difficult. We often rely on metrics of scholarly authority to find the prominent authors but these authority indices do not differentiate authority based on research topics. We present Latent Topical-Authority Indexing (LTAI) for jointly modeling the topics, citations, and topical authority in a corpus of academic papers. Compared to previous models, LTAI differs in two main aspects. First, it explicitly models the generative process of the citations, rather than treating the citations as given. Second, it models each author's influence on citations of a paper based on the topics of the cited papers, as well as the citing papers. We fit LTAI to four academic corpora: CORA, Arxiv Physics, PNAS, and Citeseer. We compare the performance of LTAI against various baselines, starting with the latent Dirichlet allocation, to the more advanced models including author-link topic model and dynamic author citation topic model. The results show that LTAI achieves improved accuracy over other similar models when predicting words, citations and authors of publications.Comment: Accepted by Transactions of the Association for Computational Linguistics (TACL); to appea

    Deep Exponential Families

    Full text link
    We describe \textit{deep exponential families} (DEFs), a class of latent variable models that are inspired by the hidden structures used in deep neural networks. DEFs capture a hierarchy of dependencies between latent variables, and are easily generalized to many settings through exponential families. We perform inference using recent "black box" variational inference techniques. We then evaluate various DEFs on text and combine multiple DEFs into a model for pairwise recommendation data. In an extensive study, we show that going beyond one layer improves predictions for DEFs. We demonstrate that DEFs find interesting exploratory structure in large data sets, and give better predictive performance than state-of-the-art models

    Efficient Correlated Topic Modeling with Topic Embedding

    Full text link
    Correlated topic modeling has been limited to small model and problem sizes due to their high computational cost and poor scaling. In this paper, we propose a new model which learns compact topic embeddings and captures topic correlations through the closeness between the topic vectors. Our method enables efficient inference in the low-dimensional embedding space, reducing previous cubic or quadratic time complexity to linear w.r.t the topic size. We further speedup variational inference with a fast sampler to exploit sparsity of topic occurrence. Extensive experiments show that our approach is capable of handling model and data scales which are several orders of magnitude larger than existing correlation results, without sacrificing modeling quality by providing competitive or superior performance in document classification and retrieval.Comment: KDD 2017 oral. The first two authors contributed equall

    Nested Hierarchical Dirichlet Processes

    Full text link
    We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP is a generalization of the nested Chinese restaurant process (nCRP) that allows each word to follow its own path to a topic node according to a document-specific distribution on a shared tree. This alleviates the rigid, single-path formulation of the nCRP, allowing a document to more easily express thematic borrowings as a random effect. We derive a stochastic variational inference algorithm for the model, in addition to a greedy subtree selection method for each document, which allows for efficient inference using massive collections of text documents. We demonstrate our algorithm on 1.8 million documents from The New York Times and 3.3 million documents from Wikipedia.Comment: To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, Special Issue on Bayesian Nonparametric
    corecore