15,046 research outputs found

    A Variational Approach to Lagrange Multipliers

    Get PDF
    We discuss Lagrange multiplier rules from a variational perspective. This allows us to highlight many of the issues involved and also to illustrate how broadly an abstract version can be applied

    Mixed formulation for frictionless contact problems

    Get PDF
    Simple mixed finite element models and a computational precedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large rotation theory of the structure with the effects of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The element characteristic array are obtained by using a modified form of the two-field Hellinger-Reissner mixed variational principle. The internal forces and the Lagrange multipliers are allowed to be discontinuous at interelement boundaries. The Newton-Raphson iterative scheme is used for the solution of the nonlinear algebraic equations, and the determination of the contact area and the contact pressures

    Error analysis of variable degree mixed methods for elliptic problems via hybridization

    Get PDF
    Abstract. A new approach to error analysis of hybridized mixed methods is proposed and applied to study a new hybridized variable degree RaviartThomas method for second order elliptic problems. The approach gives error estimates for the Lagrange multipliers without using error estimates for the other variables. Error estimates for the primal and flux variables then follow from those for the Lagrange multipliers. In contrast, traditional error analyses obtain error estimates for the flux and primal variables first and then use it to get error estimates for the Lagrange multipliers. The new approach not only gives new error estimates for the new variable degree Raviart-Thomas method, but also new error estimates for the classical uniform degree method with less stringent regularity requirements than previously known estimates. The error analysis is achieved by using a variational characterization of the Lagrange multipliers wherein the other unknowns do not appear. This approach can be applied to other hybridized mixed methods as well
    corecore