29 research outputs found

    Machine Learning in Digital Signal Processing for Optical Transmission Systems

    Get PDF
    The future demand for digital information will exceed the capabilities of current optical communication systems, which are approaching their limits due to component and fiber intrinsic non-linear effects. Machine learning methods are promising to find new ways of leverage the available resources and to explore new solutions. Although, some of the machine learning methods such as adaptive non-linear filtering and probabilistic modeling are not novel in the field of telecommunication, enhanced powerful architecture designs together with increasing computing power make it possible to tackle more complex problems today. The methods presented in this work apply machine learning on optical communication systems with two main contributions. First, an unsupervised learning algorithm with embedded additive white Gaussian noise (AWGN) channel and appropriate power constraint is trained end-to-end, learning a geometric constellation shape for lowest bit-error rates over amplified and unamplified links. Second, supervised machine learning methods, especially deep neural networks with and without internal cyclical connections, are investigated to combat linear and non-linear inter-symbol interference (ISI) as well as colored noise effects introduced by the components and the fiber. On high-bandwidth coherent optical transmission setups their performances and complexities are experimentally evaluated and benchmarked against conventional digital signal processing (DSP) approaches. This thesis shows how machine learning can be applied to optical communication systems. In particular, it is demonstrated that machine learning is a viable designing and DSP tool to increase the capabilities of optical communication systems

    Approximate inference in massive MIMO scenarios with moment matching techniques

    Get PDF
    Menci贸n Internacional en el t铆tulo de doctorThis Thesis explores low-complexity inference probabilistic algorithms in high-dimensional Multiple-Input Multiple-Output (MIMO) systems and high order M-Quadrature Amplitude Modulation (QAM) constellations. Several modern communications systems are using more and more antennas to maximize spectral efficiency, in a new phenomena call Massive MIMO. However, as the number of antennas and/or the order of the constellation grow several technical issues have to be tackled, one of them is that the symbol detection complexity grows fast exponentially with the system dimension. Nowadays the design of massive MIMO low-complexity receivers is one important research line in MIMO because symbol detection can no longer rely on conventional approaches such as Maximum a Posteriori (MAP) due to its exponential computation complexity. This Thesis proposes two main results. On one hand a hard decision low-complexity MIMO detector based on Expectation Propagation (EP) algorithm which allows to iteratively approximate within polynomial cost the posterior distribution of the transmitted symbols. The receiver is named Expectation Propagation Detector (EPD) and its solution evolves from Minimum Mean Square Error (MMSE) solution and keeps per iteration the MMSE complexity which is dominated by a matrix inversion. Hard decision Symbol Error Rate (SER) performance is shown to remarkably improve state-of-the-art solutions of similar complexity. On the other hand, a soft-inference algorithm, more suitable to modern communication systems with channel codification techniques such as Low- Density Parity-Check (LDPC) codes, is also presented. Modern channel decoding techniques need as input Log-Likehood Ratio (LLR) information for each coded bit. In order to obtain that information, firstly a soft bit inference procedure must be performed. In low-dimensional scenarios, this can be done by marginalization over the symbol posterior distribution. However, this is not feasible at high-dimension. While EPD could provide this probabilistic information, it is shown that its probabilistic estimates are in general poor in the low Signal-to-Noise Ratio (SNR) regime. In order to solve this inconvenience a new algorithm based on the Expectation Consistency (EC) algorithm, which generalizes several algorithms such as Belief. Propagation (BP) and EP itself, was proposed. The proposed algorithm called Expectation Consistency Detector (ECD) maps the inference problem as an optimization over a non convex function. This new approach allows to find stationary points and tradeoffs between accuracy and convergence, which leads to robust update rules. At the same complexity cost than EPD, the new proposal achieves a performance closer to channel capacity at moderate SNR. The result reveals that the probabilistic detection accuracy has a relevant impact in the achievable rate of the overall system. Finally, a modified ECD algorithm is presented, with a Turbo receiver structure where the output of the decoder is fed back to ECD, achieving performance gains in all block lengths simulated. The document is structured as follows. In Chapter I an introduction to the MIMO scenario is presented, the advantages and challenges are exposed and the two main scenarios of this Thesis are set forth. Finally, the motivation behind this work, and the contributions are revealed. In Chapters II and III the state of the art and our proposal are presented for Hard Detection, whereas in Chapters IV and V are exposed for Soft Inference Detection. Eventually, a conclusion and future lines can be found in Chapter VI.Esta Tesis aborda algoritmos de baja complejidad para la estimaci贸n probabil铆stica en sistemas de Multiple-Input Multiple-Output (MIMO) de grandes dimensiones con constelaciones M-Quadrature Amplitude Modulation (QAM) de alta dimensionalidad. Son diversos los sistemas de comunicaciones que en la actualidad est谩n utilizando m谩s y m谩s antenas para maximizar la eficiencia espectral, en un nuevo fen贸meno denominado Massive MIMO. Sin embargo los incrementos en el n煤mero de antenas y/o orden de la constelaci贸n presentan ciertos desaf铆os tecnol贸gicos que deben ser considerados. Uno de ellos es la detecci贸n de los s铆mbolos transmitidos en el sistema debido a que la complejidad aumenta m谩s r谩pido que las dimensiones del sistema. Por tanto el dise帽o receptores para sistemas Massive MIMO de baja complejidad es una de las importantes l铆neas de investigaci贸n en la actualidad en MIMO, debido principalmente a que los m茅todos tradicionales no se pueden implementar en sistemas con decenas de antenas, cuando lo deseable ser铆an centenas, debido a que su coste es exponencial. Los principales resultados en esta Tesis pueden clasificarse en dos. En primer lugar un receptor MIMO para decisi贸n dura de baja complejidad basado en el algoritmo Expectation Propagation (EP) que permite de manera iterativa, con un coste computacional polin贸mico por iteraci贸n, aproximar la distribuci贸n a posteriori de los s铆mbolos transmitidos. El algoritmo, denominado Expectation Propagation Detector (EPD), es inicializado con la soluci贸n del algoritmo Minimum Mean Square Error (MMSE) y mantiene el coste de este para todas las iteraciones, dominado por una inversi贸n de matriz. El rendimiento del decisor en probabilidad de error de s铆mbolo muestra ganancias remarcables con respecto a otros m茅todos en la literatura con una complejidad similar. En segundo lugar, un algoritmo que provee una estimaci贸n blanda, informaci贸n que es m谩s apropiada para los actuales sistemas de comunicaciones que utilizan codificaci贸n de canal, como pueden ser c贸digos Low-Density Parity-Check (LDPC). La informaci贸n necesaria para estos decodificadores de canal es Log-Likehood Ratio (LLR) para cada uno de los bits codificados. En escenarios de bajas dimensiones se pueden calcular las marginales de la distribuci贸n a posteriori, pero en escenarios de grandes dimensiones no es viable, aunque EPD puede proporcionar este tipo de informaci贸n a la entrada del decodificador, dicha informaci贸n no es la mejor al estar el algoritmo pensado para detecci贸n dura, sobre todo se observa este fen贸meno en el rango de baja Signal-to-Noise Ratio (SNR). Para solucionar este problema se propone un nuevo algoritmo basado en Expectation Consistency (EC) que engloba diversos algoritmos como pueden ser Belief Propagation (BP) y el algoritmo EP propuesto con anterioridad. El nuevo algoritmo llamado Expectation Consistency Detector (ECD), trata el problema como una optimizaci贸n de una funci贸n no convexa. Esta aproximaci贸n permite encontrar los puntos estacionarios y la relaci贸n entre precisi贸n y convergencia, que permitir谩n reglas de actualizaci贸n m谩s robustas y eficaces. Con la misma compleja que el algoritmo propuesto inicialmente, ECD permite rendimientos m谩s pr贸ximos a la capacidad del canal en reg铆menes moderados de SNR. Los resultados muestran que la precisi贸n tiene un gran efecto en la tasa que alcanza el sistema. Finalmente una versi贸n modificada de ECD es propuesta en una arquitectura t铆pica de los Turbo receptores, en la que la salida del decodificador es la entrada del receptor, y que permite ganancias en el rendimiento en todas las longitudes de c贸digo simuladas. El presente documento est谩 estructurado de la siguiente manera. En el primer Cap铆tulo I, se realiza una introducci贸n a los sistemas MIMO, presentando sus ventajas, desventajas, problemas abiertos. Los modelos que se utilizaran en la tesis y la motivaci贸n con la que se inici贸 esta tesis son expuestos en este primer cap铆tulo. En los Cap铆tulos II y III el estado del arte y nuestra propuesta para detecci贸n dura son presentados, mientras que en los Cap铆tulos IV y V se presentan para detecci贸n suave. Finalmente las conclusiones que pueden obtenerse de esta Tesis y futuras l铆neas de investigaci贸n son expuestas en el Cap铆tulo VI.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Juan Jos茅 Murillo Fuentes.- Secretario: Gonzalo V谩zquez Vilar.- Vocal: Mar铆a Isabel Valera Mart铆ne

    Zero-delay source-channel coding

    Get PDF
    In this thesis, we investigate the zero-delay transmission of source samples over three different types of communication channel models. First, we consider the zero-delay transmission of a Gaussian source sample over an additive white Gaussian noise (AWGN) channel in the presence of an additive white Gaussian (AWG) interference, which is fully known by the transmitter. We propose three parameterized linear and non-linear transmission schemes for this scenario, and compare the corresponding mean square error (MSE) performances with that of a numerically optimized encoder, obtained using the necessary optimality conditions. Next, we consider the zero-delay transmission of a Gaussian source sample over an AWGN channel with a one-bit analog-to-digital (ADC) front end. We study this problem under two different performance criteria, namely the MSE distortion and the distortion outage probability (DOP), and obtain the optimal encoder and the decoder for both criteria. As generalizations of this scenario, we consider the performance with a K-level ADC front end as well as with multiple one-bit ADC front ends. We derive necessary conditions for the optimal encoder and decoder, which are then used to obtain numerically optimized encoder and decoder mappings. Finally, we consider the transmission of a Gaussian source sample over an AWGN channel with a one-bit ADC front end in the presence of correlated side information at the receiver. Again, we derive the necessary optimality conditions, and using these conditions obtain numerically optimized encoder and decoder mappings. We also consider the scenario in which the side information is available also at the encoder, and obtain the optimal encoder and decoder mappings. The performance of the latter scenario serves as a lower bound on the performance of the case in which the side information is available only at the decoder.Open Acces

    Advanced receivers for distributed cooperation in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulato

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    D13.3 Overall assessment of selected techniques on energy- and bandwidth-efficient communications

    Get PDF
    Deliverable D13.3 del projecte europeu NEWCOM#The report presents the outcome of the Joint Research Activities (JRA) of WP1.3 in the last year of the Newcom# project. The activities focus on the investigation of bandwidth and energy efficient techniques for current and emerging wireless systems. The JRAs are categorized in three Tasks: (i) the first deals with techniques for power efficiency and minimization at the transceiver and network level; (ii) the second deals with the handling of interference by appropriate low interference transmission techniques; (iii) the third is concentrated on Radio Resource Management (RRM) and Interference Management (IM) in selected scenarios, including HetNets and multi-tier networks.Peer ReviewedPostprint (published version
    corecore