4,735 research outputs found

    Smart matching

    Full text link
    One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behavior in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    On the saturation of YAGO

    Get PDF
    YAGO is an automatically generated ontology out of Wikipedia and WordNet. It is eventually represented in a proprietary flat text file format and a core comprises 10 million facts and formulas. We present a translation of YAGO into the Bernays-Sch¨onfinkel Horn class with equality. A new variant of the superposition calculus is sound, complete and terminating for this class. Together with extended term indexing data structures the new calculus is implemented in Spass-YAGO. YAGO can be finitely saturated by Spass-YAGO in about 1 hour.We have found 49 inconsistencies in the original generated ontology which we have fixed. Spass-YAGO can then prove non-trivial conjectures with respect to the resulting saturated and consistent clause set of about 1.4 GB in less than one second

    Uniform Continuity and Br\'ezis-Lieb Type Splitting for Superposition Operators in Sobolev Space

    Full text link
    Using concentration-compactness arguments we prove a variant of the Brezis-Lieb-Lemma under weaker assumptions on the nonlinearity than known before. An intermediate result on the uniform continuity of superposition operators in Sobolev space is of independent interest

    Contextual viewpoint to quantum stochastics

    Get PDF
    We study the role of context, complex of physical conditions, in quantum as well as classical experiments. It is shown that by taking into account contextual dependence of experimental probabilities we can derive the quantum rule for the addition of probabilities of alternatives. Thus we obtain quantum interference without applying to wave or Hilbert space approach. The Hilbert space representation of contextual probabilities is obtained as a consequence of the elementary geometric fact: cos\cos-theorem. By using another fact from elementary algebra we obtain complex-amplitude representation of probabilities. Finally, we found contextual origin of noncommutativity of incompatible observables

    Rewriting Modulo \beta in the \lambda\Pi-Calculus Modulo

    Full text link
    The lambda-Pi-calculus Modulo is a variant of the lambda-calculus with dependent types where beta-conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the lambda-Pi-calculus Modulo. However, they hold if the rewrite system generated by the rewrite rules together with beta-reduction is confluent. But this is too restrictive. To handle the case where non confluence comes from the interference between the beta-reduction and rewrite rules with lambda-abstraction on their left-hand side, we introduce a notion of rewriting modulo beta for the lambda-Pi-calculus Modulo. We prove that confluence of rewriting modulo beta is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the lambda-Pi-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the confluence results for HRSs available for the lambda-Pi-calculus Modulo.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    De-linearizing Linearity: Projective Quantum Axiomatics from Strong Compact Closure

    Get PDF
    Elaborating on our joint work with Abramsky in quant-ph/0402130 we further unravel the linear structure of Hilbert spaces into several constituents. Some prove to be very crucial for particular features of quantum theory while others obstruct the passage to a formalism which is not saturated with physically insignificant global phases. First we show that the bulk of the required linear structure is purely multiplicative, and arises from the strongly compact closed tensor which, besides providing a variety of notions such as scalars, trace, unitarity, self-adjointness and bipartite projectors, also provides Hilbert-Schmidt norm, Hilbert-Schmidt inner-product, and in particular, the preparation-state agreement axiom which enables the passage from a formalism of the vector space kind to a rather projective one, as it was intended in the (in)famous Birkhoff & von Neumann paper. Next we consider additive types which distribute over the tensor, from which measurements can be build, and the correctness proofs of the protocols discussed in quant-ph/0402130 carry over to the resulting weaker setting. A full probabilistic calculus is obtained when the trace is moreover linear and satisfies the \em diagonal axiom, which brings us to a second main result, characterization of the necessary and sufficient additive structure of a both qualitatively and quantitatively effective categorical quantum formalism without redundant global phases. Along the way we show that if in a category a (additive) monoidal tensor distributes over a strongly compact closed tensor, then this category is always enriched in commutative monoids.Comment: Essential simplification of the definitions of orthostructure and ortho-Bornian structure: the key new insights is captured by the definitions in terms of commutative diagrams on pages 13 and 14, which state that if in a category a (additive) monoidal tensor distributes over a strongly compact closed tensor, then this category is always enriched in commutative monoid
    corecore