964 research outputs found

    A Hierarchical Approach to Computer-Aided Design of Quantum Circuits

    Get PDF
    A new approach to synthesis of permutation class of quantum logic circuits has been proposed in this paper. This approach produces better results than the previous approaches based on classical reversible logic and can be easier tuned to any particular quantum technology such as nuclear magnetic resonance (NMR). First we synthesize a library of permutation (pseudobinary) gates using a Computer-Aided-Design approach that links evolutionary and combinatorics approaches with human experience and creativity. Next the circuit is designed using these gates and standard 1*1 and 2*2 quantum gates and finally the optimizing tautological transforms are applied to the circuit, producing a sequence of quantum operations being close to operations practically realizable. These hierarchical stages can be compared to standard gate library design, generic logic synthesis and technology mapping stages of classical CAD systems, respectively. We use an informed genetic algorithm to evolve arbitrary quantum circuit specified by a (target) unitary matrix, specific encoding that reduces the time of calculating the resultant unitary matrices of chromosomes, and an evolutionary algorithm specialized to permutation circuits specified by truth tables. We outline interactive CAD approach in which the designer is a part of feedback loop in evolutionary program and the search is not for circuits of known specifications, but for any gates with high processing power and small cost for given constraints. In contrast to previous approaches, our methodology allows synthesis of both: small quantum circuits of arbitrary type (gates), and permutation class circuits that are well realizable in particular technology

    Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042

    Get PDF
    Background \ud Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. \ud \ud Methods \ud In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biologβ„’ Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. \ud \ud Conclusion \ud This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies

    Evolutionary algorithms for synthesis and optimisation of sequential logic circuits.

    Get PDF
    Considerable progress has been made recently 1n the understanding ofcombinational logic optimization. Consequently a large number of universityand industrial Electric Computing Aided Design (ECAD) programs are nowavailable for optimal logic synthesis of combinational circuits. The progresswith sequential logic synthesis and optimization, on the other hand, isconsiderably less mature.In recent years, evolutionary algorithms have been found to be remarkablyeffective way of using computers for solving difficult problems. This thesis is,in large part, a concentrated effort to apply this philosophy to the synthesisand optimization of sequential circuits.A state assignment based on the use of a Genetic Algorithm (GA) for theoptimal synthesis of sequential circuits is presented. The state assignmentdetermines the structure of the sequential circuit realizing the state machineand therefore its area and performances. The synthesis based on the GAapproach produced designs with the smallest area to date. Test results onstandard fmite state machine (FS:M) benchmarks show that the GA couldgenerate state assignments, which required on average 15.44% fewer gatesand 13.47% fewer literals compared with alternative techniques.Hardware evolution is performed through a succeSSlOn ofchanges/reconfigurations of elementary components, inter-connectivity andselection of the fittest configurations until the target functionality is reached.The thesis presents new approaches, which combine both genetic algorithmfor state assignment and extrinsic Evolvable Hardware (EHW) to designsequential logic circuits. The implemented evolutionary algorithms are able todesign logic circuits with size and complexity, which have not beendemonstrated in published work.There are still plenty of opportunities to develop this new line of research forthe synthesis, optimization and test of novel digital, analogue and mixedcircuits. This should lead to a new generation of Electronic DesignAutomation tools
    • …
    corecore