847 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    DoShiCo Challenge: Domain Shift in Control Prediction

    Full text link
    Training deep neural network policies end-to-end for real-world applications so far requires big demonstration datasets in the real world or big sets consisting of a large variety of realistic and closely related 3D CAD models. These real or virtual data should, moreover, have very similar characteristics to the conditions expected at test time. These stringent requirements and the time consuming data collection processes that they entail, are currently the most important impediment that keeps deep reinforcement learning from being deployed in real-world applications. Therefore, in this work we advocate an alternative approach, where instead of avoiding any domain shift by carefully selecting the training data, the goal is to learn a policy that can cope with it. To this end, we propose the DoShiCo challenge: to train a model in very basic synthetic environments, far from realistic, in a way that it can be applied in more realistic environments as well as take the control decisions on real-world data. In particular, we focus on the task of collision avoidance for drones. We created a set of simulated environments that can be used as benchmark and implemented a baseline method, exploiting depth prediction as an auxiliary task to help overcome the domain shift. Even though the policy is trained in very basic environments, it can learn to fly without collisions in a very different realistic simulated environment. Of course several benchmarks for reinforcement learning already exist - but they never include a large domain shift. On the other hand, several benchmarks in computer vision focus on the domain shift, but they take the form of a static datasets instead of simulated environments. In this work we claim that it is crucial to take the two challenges together in one benchmark.Comment: Published at SIMPAR 2018. Please visit the paper webpage for more information, a movie and code for reproducing results: https://kkelchte.github.io/doshic

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Information and communication technology solutions for outdoor navigation in dementia

    Get PDF
    INTRODUCTION: Information and communication technology (ICT) is potentially mature enough to empower outdoor and social activities in dementia. However, actual ICT-based devices have limited functionality and impact, mainly limited to safety. What is an ideal operational framework to enhance this field to support outdoor and social activities? METHODS: Review of literature and cross-disciplinary expert discussion. RESULTS: A situation-aware ICT requires a flexible fine-tuning by stakeholders of system usability and complexity of function, and of user safety and autonomy. It should operate by artificial intelligence/machine learning and should reflect harmonized stakeholder values, social context, and user residual cognitive functions. ICT services should be proposed at the prodromal stage of dementia and should be carefully validated within the life space of users in terms of quality of life, social activities, and costs. DISCUSSION: The operational framework has the potential to produce ICT and services with high clinical impact but requires substantial investment

    Toward Adaptive Trust Calibration for Level 2 Driving Automation

    Full text link
    Properly calibrated human trust is essential for successful interaction between humans and automation. However, while human trust calibration can be improved by increased automation transparency, too much transparency can overwhelm human workload. To address this tradeoff, we present a probabilistic framework using a partially observable Markov decision process (POMDP) for modeling the coupled trust-workload dynamics of human behavior in an action-automation context. We specifically consider hands-off Level 2 driving automation in a city environment involving multiple intersections where the human chooses whether or not to rely on the automation. We consider automation reliability, automation transparency, and scene complexity, along with human reliance and eye-gaze behavior, to model the dynamics of human trust and workload. We demonstrate that our model framework can appropriately vary automation transparency based on real-time human trust and workload belief estimates to achieve trust calibration.Comment: 10 pages, 8 figure
    corecore