420,036 research outputs found

    Analytical interconnection networks model for multi-cluster computing systems

    Full text link
    This paper addresses the problem of interconnection networks performance modeling of large-scale distributed systems with emphases on multi-cluster computing systems. The study of interconnection networks is important because the overall performance of a distributed system is often critically hinged on the effectiveness of its interconnection network. We present an analytical model that considers stochastic quantities as well as processor heterogeneity of the target system. The model is validated through comprehensive simulation, which demonstrates that the proposed model exhibits a good degree of accuracy for various system sizes and under different operating conditions.<br /

    Communication network analysis of the enterprise grid systems

    Full text link
    This paper addresses the problem of performance analysis based on communication modelling of largescale heterogeneous distributed systems with emphases on enterprise grid computing systems. The study of communication layers is important because the overall performance of a distributed system is often critically hinged on the effectiveness of this part. This model considers processor as well as network heterogeneity of target system. The model is validated through comprehensive simulation, which demonstrates that the proposed model exhibits a good degree of accuracy for various system sizes and under different working conditions. The proposed model is then used to investigate the performance analysis of typical systems.<br /

    Analytical modeling of communication latency in multi-cluster systems

    Full text link
    This paper addresses the problem of performance modeling of large-scale distributed systems with emphasis on communication networks in heterogeneous multi-cluster systems. The study of interconnection networks is important because the overall performance of a distributed system is often critically hinged on the effectiveness of this part. We present an analytical model to predict message latency in multi-cluster systems in the presence of processor heterogeneity. The model is validated through comprehensive simulation, which demonstrates that the proposed model exhibits a good degree of accuracy for various system sizes and under different operating conditions.<br /

    Analytical performance modeling of the enterprise grid computing

    Full text link
    This paper addresses the problem of performance modeling of large-scale heterogeneous distributed systems with emphases on enterprise grid computing systems. To this end, we present an analytical model that can be employed to explore the effectiveness of different design approaches so that one can have an intelligent choice during design and evaluation a cost-effective large-scale heterogeneous distributed computing system. The model is validated through comprehensive simulation.<br /

    Analysis of interconnection networks in heterogeneous multi-cluster systems

    Full text link
    The study of interconnection networks is important because the overall performance of a distributed system is often critically hinged on the effectiveness of its interconnection network. In the mean time, the heterogeneity is one of the most important factors of such systems. This paper addresses the problem of interconnection networks performance modeling of large-scale distributed systems with emphases on heterogeneous multi-cluster computing systems. So, we present an analytical model to predict message latency in multi-cluster systems in the presence of cluster size heterogeneity. The model is validated through comprehensive simulation, which demonstrates that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions.<br /

    Maximizing Service Reliability in Distributed Computing Systems with Random Node Failures: Theory and Implementation

    Get PDF
    In distributed computing systems (DCSs) where server nodes can fail permanently with nonzero probability, the system performance can be assessed by means of the service reliability, defined as the probability of serving all the tasks queued in the DCS before all the nodes fail. This paper presents a rigorous probabilistic framework to analytically characterize the service reliability of a DCS in the presence of communication uncertainties and stochastic topological changes due to node deletions. The framework considers a system composed of heterogeneous nodes with stochastic service and failure times and a communication network imposing random tangible delays. The framework also permits arbitrarily specified, distributed load-balancing actions to be taken by the individual nodes in order to improve the service reliability. The presented analysis is based upon a novel use of the concept of stochastic regeneration, which is exploited to derive a system of difference-differential equations characterizing the service reliability. The theory is further utilized to optimize certain load-balancing policies for maximal service reliability; the optimization is carried out by means of an algorithm that scales linearly with the number of nodes in the system. The analytical model is validated using both Monte Carlo simulations and experimental data collected from a DCS testbed

    Extended Triple-Junction Solar Cell 3D Distributed Model: Application to Chromatic Aberration-Related Losses

    Get PDF
    An extended 3D distributed model based on distributed circuit units for the simulation of triple‐junction solar cells under realistic conditions for the light distribution has been developed. A special emphasis has been put in the capability of the model to accurately account for current mismatch and chromatic aberration effects. This model has been validated, as shown by the good agreement between experimental and simulation results, for different light spot characteristics including spectral mismatch and irradiance non‐uniformities. This model is then used for the prediction of the performance of a triple‐junction solar cell for a light spot corresponding to a real optical architecture in order to illustrate its suitability in assisting concentrator system analysis and design process

    Analysis of multi-cluster computing systems with processor heterogeneity

    Full text link
    This paper addresses the problem of performance modeling of heterogeneous multi-cluster computing systems. We present an analytical model that can be employed to explore the effectiveness of different design approaches so that one can have an intelligent choice during design and evaluation of a cost effective large-scale heterogeneous distributed computing system. The proposed model considers stochastic quantities as well as processor heterogeneity of the target system. The analysis is based on a parametric fat-tree network, the m-port n-tree, and a deterministic routing algorithm. The correctness of the proposed model is validated through comprehensive simulation of different types of clusters.<br /

    Data-Driven Distributed Modeling, Operation, and Control of Electric Power Distribution Systems

    Get PDF
    The power distribution system is disorderly in design and implementation, chaotic in operation, large in scale, and complex in every way possible. Therefore, modeling, operating, and controlling the distribution system is incredibly challenging. It is required to find solutions to the multitude of challenges facing the distribution grid to transition towards a just and sustainable energy future for our society. The key to addressing distribution system challenges lies in unlocking the full potential of the distribution grid. The work in this dissertation is focused on finding methods to operate the distribution system in a reliable, cost-effective, and just manner. In this PhD dissertation, a new data-driven distributed (D3MD^3M) framework using cellular computational networks has been developed to model power distribution systems. Its performance is validated on an IEEE test case. The results indicate a significant enhancement in accuracy and performance compared to the state-of-the-art centralized modeling approach. This dissertation also presents a new distributed and data-driven optimization method for volt-var control in power distribution systems. The framework is validated for voltage control on an IEEE test feeder. The results indicate that the system has improved performance compared to the state-of-the-art approach. The PhD dissertation also presents a design for a real-time power distribution system testbed. A new data-in-the-loop (DIL) simulation method has been developed and integrated into the testbed. The DIL method has been used to enhance the quality of the real-time simulations. The assets combined with the testbed include data, control, and hardware-in-the-loop infrastructure. The testbed is used to validate the performance of a distribution system with significant penetration of distributed energy resources

    Discrete event simulation for the purpose of real-time performance evaluation of distributed hardware-in-the-loop simulators for autonomous driving vehicle validation

    Get PDF
    Hardware-in-the-loop test benches are distributed computer systems including software, hardware and networking devices, which require strict real-time guarantees. To guarantee strict real-time of the simulator the performance needs to be evaluated. To evaluate the timing performance a discrete event simulation model is built up. The input modeling is based on measurements from the real system in a prototype phase. The results of the simulation model are validated with measurements from a prototype of the real system. The workload is increased until the streaming source becomes unstable, by either exceeding a certain limit of bytes or exceeding the number of parallel software processes running on the cores of the central processing unit. To evaluate the performance beyond these limits, the discrete event simulation model needs to be enriched by a scheduler and a hardware model. To provide real-time guarantees an analytical model needs to be built up
    corecore