3,855 research outputs found

    Maximising the Circular Economy and Sustainability Outcomes: An End-of-life Tyre Recycling Outlets Selection Model

    Get PDF
    The increasing concern for sustainability and longing for the transition into the circular economy has fostered an immense interest in re-configuring the end-of-life tyre supply networks. However, the existing literature is incapable of providing sufficient guidance in regard to the allocation of end-of-life tyre among recycling outlets to maximise the circular economy and sustainability outcomes. Hence, this study aims to propose a comprehensive list of evaluation criteria to rank recycling outlets, and develop an end-of-life tyre outlets selection matrix. A hybrid method is proposed by integrating fuzzy Analytical Hierarchy Process, fuzzy Technique of Order Preference Similarity to the Ideal Solution, the multi-objective linear programming, and semi-structured interviews. By analysing the empirical data collected from one of the largest European collectors, this study reveals that cement manufacturing, which is the primary recycling outlet, ranks the lowest among the five recycling outlets in terms of the circular economy and sustainability outcome. Nevertheless, synthetic turf manufacturing and moulded objects manufacturing rank the highest in the circular economy and sustainability outcomes, respectively. It is proved that cost and profit are key drivers for recycling outlets selection, subjected to end consumers’ perceptions and the ease of end-of-life tyre processing. The ranking and the performance of recycling outlets also signify the competitive relationship between the circular economy and sustainability as excelling in the circular economy outcome would trade-off sustainability performance

    Rapid health data repository allocation using predictive machine learning

    Get PDF
    Health-related data is stored in a number of repositories that are managed and controlled by different entities. For instance, Electronic Health Records are usually administered by governments. Electronic Medical Records are typically controlled by health care providers, whereas Personal Health Records are managed directly by patients. Recently, Blockchain-based health record systems largely regulated by technology have emerged as another type of repository. Repositories for storing health data differ from one another based on cost, level of security and quality of performance. Not only has the type of repositories increased in recent years, but the quantum of health data to be stored has increased. For instance, the advent of wearable sensors that capture physiological signs has resulted in an exponential growth in digital health data. The increase in the types of repository and amount of data has driven a need for intelligent processes to select appropriate repositories as data is collected. However, the storage allocation decision is complex and nuanced. The challenges are exacerbated when health data are continuously streamed, as is the case with wearable sensors. Although patients are not always solely responsible for determining which repository should be used, they typically have some input into this decision. Patients can be expected to have idiosyncratic preferences regarding storage decisions depending on their unique contexts. In this paper, we propose a predictive model for the storage of health data that can meet patient needs and make storage decisions rapidly, in real-time, even with data streaming from wearable sensors. The model is built with a machine learning classifier that learns the mapping between characteristics of health data and features of storage repositories from a training set generated synthetically from correlations evident from small samples of experts. Results from the evaluation demonstrate the viability of the machine learning technique used. © The Author(s) 2020

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    Determine of Surface Water Quality Index in Iran

    Get PDF
    In modeling complex of environmental problems, researchers often fail to define precise statements about input and outcomes of contaminants, but fuzzy logic could help to dominate this logical indecision. The goal of this work is to propose a new river water quality indicator using fuzzy logic. The proposed index combines six indicators, and not only does it exhibit a tool that accounts for the discrepancy between the two base indices, but also provides a quantifiable score for the determined water quality. These classifications with a membership grade can be of a sound support for decision-making, and can help assign each section of a river a gradual quality sub-objective to be reached. To show the applicability of the proposed approach, the new indicator was used to classify water quality in a number of stations along the basins of Qarah-chai and Siminehrood. The obtained classifications were then compared to the conventional physicochemical water quality indicator currently in use in Iran. The results revealed that the fuzzy indicator provided stringent classifications compared to the conventional index in 38% and 44% of the cases for the two basins respectively. These noted exceptions are mainly due to the big disagreement between the different quality thresholds in the two standards, especially for fecal coliform and total phosphorus. These large disparities put forward an argument for the Iranian water quality law to be upgraded. Keywords: Fuzzy logic; Qarah-chai basin; Siminehrood; Water quality inde

    Data Analysis Methods for Software Systems

    Get PDF
    Using statistics, econometrics, machine learning, and functional data analysis methods, we evaluate the consequences of the lockdown during the COVID-19 pandemics for wage inequality and unemployment. We deduce that these two indicators mostly reacted to the first lockdown from March till June 2020. Also, analysing wage inequality, we conduct analysis separately for males and females and different age groups.We noticed that young females were affected mostly by the lockdown.Nevertheless, all the groups reacted to the lockdown at some level
    • …
    corecore