433 research outputs found

    A nonlinear image restoration framework using vector quantization

    Get PDF
    Vector quantization (VQ) is a powerful method used primarily in signal and image compression. In recent years, it has also been applied to various other image processing tasks, including image classification, histogram modification, and restoration. In this paper, we focus our attention on image restoration using VQ. We present a general framework that incorporates two other methods in the literature, and discuss our method that follows more naturally from this framework. With appropriate training data for the VQ codebook, this method can restore images beyond its diffraction limit. © 2004 IEEE.published_or_final_versio

    Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal

    Get PDF
    In this paper, we address the problem of estimating and removing non-uniform motion blur from a single blurry image. We propose a deep learning approach to predicting the probabilistic distribution of motion blur at the patch level using a convolutional neural network (CNN). We further extend the candidate set of motion kernels predicted by the CNN using carefully designed image rotations. A Markov random field model is then used to infer a dense non-uniform motion blur field enforcing motion smoothness. Finally, motion blur is removed by a non-uniform deblurring model using patch-level image prior. Experimental evaluations show that our approach can effectively estimate and remove complex non-uniform motion blur that is not handled well by previous approaches.Comment: This is a final version accepted by CVPR 201

    Generative Prior for Unsupervised Image Restoration

    Get PDF
    The challenge of restoring real world low-quality images is due to a lack of appropriate training data and difficulty in determining how the image was degraded. Recently, generative models have demonstrated great potential for creating high- quality images by utilizing the rich and diverse information contained within the model’s trained weights and learned latent representations. One popular type of generative model is the generative adversarial network (GAN). Many new methods have been developed to harness the information found in GANs for image manipulation. Our proposed approach is to utilize generative models for both understanding the degradation of an image and restoring it. We propose using a combination of cycle consistency losses and self-attention to enhance face images by first learning the degradation and then using this information to train a style-based neural network. We also aim to use the latent representation to achieve a high level of magnification for face images (x64). By incorporating the weights of a pre-trained StyleGAN into a restoration network with a vision transformer layer, we hope to improve the current state-of-the-art in face image restoration. Finally, we present a projection-based image-denoising algorithm named Noise2Code in the latent space of the VQGAN model with a fixed-point regularization strategy. The fixed-point condition follows the observation that the pre-trained VQGAN affects the clean and noisy images in a drastically different way. Unlike previous projection-based image restoration in the latent space, both the denoising network and VQGAN model parameters are jointly trained, although the latter is not needed during the testing. We report experimental results to demonstrate that the proposed Noise2Code approach is conceptually simple, computationally efficient, and generalizable to real-world degradation scenarios

    RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors

    Full text link
    Existing dehazing approaches struggle to process real-world hazy images owing to the lack of paired real data and robust priors. In this work, we present a new paradigm for real image dehazing from the perspectives of synthesizing more realistic hazy data and introducing more robust priors into the network. Specifically, (1) instead of adopting the de facto physical scattering model, we rethink the degradation of real hazy images and propose a phenomenological pipeline considering diverse degradation types. (2) We propose a Real Image Dehazing network via high-quality Codebook Priors (RIDCP). Firstly, a VQGAN is pre-trained on a large-scale high-quality dataset to obtain the discrete codebook, encapsulating high-quality priors (HQPs). After replacing the negative effects brought by haze with HQPs, the decoder equipped with a novel normalized feature alignment module can effectively utilize high-quality features and produce clean results. However, although our degradation pipeline drastically mitigates the domain gap between synthetic and real data, it is still intractable to avoid it, which challenges HQPs matching in the wild. Thus, we re-calculate the distance when matching the features to the HQPs by a controllable matching operation, which facilitates finding better counterparts. We provide a recommendation to control the matching based on an explainable solution. Users can also flexibly adjust the enhancement degree as per their preference. Extensive experiments verify the effectiveness of our data synthesis pipeline and the superior performance of RIDCP in real image dehazing.Comment: Acceptted by CVPR 202

    DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

    Full text link
    We present DiffBIR, which leverages pretrained text-to-image diffusion models for blind image restoration problem. Our framework adopts a two-stage pipeline. In the first stage, we pretrain a restoration module across diversified degradations to improve generalization capability in real-world scenarios. The second stage leverages the generative ability of latent diffusion models, to achieve realistic image restoration. Specifically, we introduce an injective modulation sub-network -- LAControlNet for finetuning, while the pre-trained Stable Diffusion is to maintain its generative ability. Finally, we introduce a controllable module that allows users to balance quality and fidelity by introducing the latent image guidance in the denoising process during inference. Extensive experiments have demonstrated its superiority over state-of-the-art approaches for both blind image super-resolution and blind face restoration tasks on synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    Learn from Unpaired Data for Image Restoration: A Variational Bayes Approach

    Full text link
    Collecting paired training data is difficult in practice, but the unpaired samples broadly exist. Current approaches aim at generating synthesized training data from the unpaired samples by exploring the relationship between the corrupted and clean data. This work proposes LUD-VAE, a deep generative method to learn the joint probability density function from data sampled from marginal distributions. Our approach is based on a carefully designed probabilistic graphical model in which the clean and corrupted data domains are conditionally independent. Using variational inference, we maximize the evidence lower bound (ELBO) to estimate the joint probability density function. Furthermore, we show that the ELBO is computable without paired samples under the inference invariant assumption. This property provides the mathematical rationale of our approach in the unpaired setting. Finally, we apply our method to real-world image denoising and super-resolution tasks and train the models using the synthetic data generated by the LUD-VAE. Experimental results validate the advantages of our method over other learnable approaches
    • …
    corecore