56 research outputs found

    Paperless Transfer of Medical Images: Storing Patient Data in Medical Images

    Get PDF
    Medical images have become an integral part ofpatient diagnosis in recent years. With the introduction of HealthInformation Management Systems (HIMS) used for the storageand sharing of patient data, as well as the use of the PictureArchiving and Communication Systems (PACS) formanipulating and storage of CT Scans, X-rays, MRIs and othermedical images, the security of patient data has become a seriousconcern for medical professionals. The secure transfer of theseimages along with patient data is necessary for maintainingconfidentiality as required by the Data Protection Act, 2011 inTrinidad and Tobago and similar legislation worldwide. Tofacilitate this secure transfer, different digital watermarking andsteganography techniques have been proposed to safely hideinformation in these digital images. This paper focuses on theamount of data that can be embedded into typical medical imageswithout compromising visual quality. In addition, ExploitingModification Direction (EMD) is selected as the method of choicefor hiding information in medical images and it is compared tothe commonly used Least Significant Bit (LSB) method.Preliminary results show that by using EMD there little to nodistortion even at the highest embedding capacity

    Compression Technique Using DCT & Fractal Compression: A Survey

    Get PDF
    Steganography differs from digital watermarking because both the information and the very existence of the information are hidden. In the beginning, the fractal image compression method is used to compress the secret image, and then we encrypt this compressed data by DES.The Existing Steganographic approaches are unable to handle the Subterfuge attack i.e, they cannot deal with the opponents not only detects a message ,but also render it useless, or even worse, modify it to opponent favor. The advantage of BCBS is the decoding can be operated without access to the cover image and it also detects if the message has been tampered without using any extra error correction. To improve the imperceptibility of the BCBS, DCT is used in combination to transfer stego-image from spatial domain to the frequency domain. The hiding capacity of the information is improved by introducing Fractal Compression and the security is enhanced using by encrypting stego-image using DES.  Copyright © www.iiste.org Keywords: Steganography, data hiding, fractal image compression, DCT

    Bit Plane Coding Based Steganography Technique for JPEG2000 Images and Videos

    Get PDF
    In this paper, a Bit Plane Coding (BPC) based steganography technique for JPEG2000 images and Motion JPEG2000 video is proposed. Embedding in this technique is performed in the lowest significant bit planes of the wavelet coefficients of a cover image. In JPEG2000 standard, the number of bit planes of wavelet coefficients to be used in encoding is dependent on the compression rate and are used in Tier-2 process of JPEG2000. In the proposed technique, Tier-1 and Tier-2 processes of JPEG2000 and Motion JPEG2000 are executed twice on the encoder side to collect the information about the lowest bit planes of all code blocks of a cover image, which is utilized in embedding and transmitted to the decoder. After embedding secret data, Optimal Pixel Adjustment Process (OPAP) is applied on stego images to enhance its visual quality. Experimental results show that proposed technique provides large embedding capacity and better visual quality of stego images than existing steganography techniques for JPEG2000 compressed images and videos. Extracted secret image is similar to the original secret image

    Image watermarking, steganography, and morphological processing

    Get PDF
    With the fast development of computer technology, research in the fields of multimedia security, image processing, and robot vision have recently become popular. Image watermarking, steganogrphic system, morphological processing and shortest path planning are important subjects among them. In this dissertation, the fundamental techniques are reviewed first followed by the presentation of novel algorithms and theorems for these three subjects. The research on multimedia security consists of two parts, image watermarking and steganographic system. In image watermarking, several algorithms are developed to achieve different goals as shown below. In order to embed more watermarks and to minimize distortion of watermarked images, a novel watermarking technique using combinational spatial and frequency domains is presented. In order to correct rounding errors, a novel technique based on the genetic algorithm (GA) is developed. By separating medical images into Region of Interest (ROI) and non-ROI parts, higher compression rates can be achieved where the ROI is compressed by lossless compression and the non-ROI by lossy compression. The GA-based watermarking technique can also be considered as a fundamental platform for other fragile watermarking techniques. In order to simplify the selection and integrate different watermarking techniques, a novel adjusted-purpose digital watermarking is developed. In order to enlarge the capacity of robust watermarking, a novel robust high-capacity watermarking is developed. In steganographic system, a novel steganographic algorithm is developed by using GA to break the inspection of steganalytic system. In morphological processing, the GA-based techniques are developed to decompose arbitrary shapes of big binary structuring elements and arbitrary values of big grayscale structuring elements into small ones. The decomposition is suited for a parallel-pipelined architecture. The techniques can speed up the morphological processing and allow full freedom for users to design any type and any size of binary and grayscale structuring elements. In applications such as shortest path planning, a novel method is first presented to obtaining Euclidean distance transformation (EDT) in just two scans of image. The shortest path can be extracted based on distance maps by tracking minimum values. In order to record the motion path, a new chain-code representation is developed to allow forward and backward movements. By placing the smooth turning-angle constraint, it is possible to mimic realistic motions of cars. By using dynamically rotational morphology, it is not only guarantee collision-free in the shortest path, but also reduce time complexity dramatically. As soon as the distance map of a destination and collision-free codes have been established off-line, shortest paths of cars given any starting location toward the destination can be promptly obtained on-line

    Application of Stochastic Diffusion for Hiding High Fidelity Encrypted Images

    Get PDF
    Cryptography coupled with information hiding has received increased attention in recent years and has become a major research theme because of the importance of protecting encrypted information in any Electronic Data Interchange system in a way that is both discrete and covert. One of the essential limitations in any cryptography system is that the encrypted data provides an indication on its importance which arouses suspicion and makes it vulnerable to attack. Information hiding of Steganography provides a potential solution to this issue by making the data imperceptible, the security of the hidden information being a threat only if its existence is detected through Steganalysis. This paper focuses on a study methods for hiding encrypted information, specifically, methods that encrypt data before embedding in host data where the ‘data’ is in the form of a full colour digital image. Such methods provide a greater level of data security especially when the information is to be submitted over the Internet, for example, since a potential attacker needs to first detect, then extract and then decrypt the embedded data in order to recover the original information. After providing an extensive survey of the current methods available, we present a new method of encrypting and then hiding full colour images in three full colour host images with out loss of fidelity following data extraction and decryption. The application of this technique, which is based on a technique called ‘Stochastic Diffusion’ are wide ranging and include covert image information interchange, digital image authentication, video authentication, copyright protection and digital rights management of image data in general
    • …
    corecore