172 research outputs found

    Word And Speaker Recognition System

    Get PDF
    In this report, a system which combines user dependent Word Recognition and text dependent speaker recognition is described. Word recognition is the process of converting an audio signal, captured by a microphone, to a word. Speaker Identification is the ability to recognize a person identity base on the specific word he/she uttered. A person's voice contains various parameters that convey information such as gender, emotion, health, attitude and identity. Speaker recognition identifies who is the speaker based on the unique voiceprint from the speech data. Voice Activity Detection (VAD), Spectral Subtraction (SS), Mel-Frequency Cepstrum Coefficient (MFCC), Vector Quantization (VQ), Dynamic Time Warping (DTW) and k-Nearest Neighbour (k-NN) are methods used in word recognition part of the project to implement using MATLAB software. For Speaker Recognition part, Vector Quantization (VQ) is used. The recognition rate for word and speaker recognition system that was successfully implemented is 84.44% for word recognition while for speaker recognition is 54.44%

    A comparison of features for large population speaker identification

    Get PDF
    Bibliography: leaves 95-104.Speech recognition systems all have one criterion in common; they perform better in a controlled environment using clean speech. Though performance can be excellent, even exceeding human capabilities for clean speech, systems fail when presented with speech data from more realistic environments such as telephone channels. The differences using a recognizer in clean and noisy environments are extreme, and this causes one of the major obstacles in producing commercial recognition systems to be used in normal environments. It is the lack of performance of speaker recognition systems with telephone channels that this work addresses. The human auditory system is a speech recognizer with excellent performance, especially in noisy environments. Since humans perform well at ignoring noise more than any machine, auditory-based methods are the promising approaches since they attempt to model the working of the human auditory system. These methods have been shown to outperform more conventional signal processing schemes for speech recognition, speech coding, word-recognition and phone classification tasks. Since speaker identification has received lot of attention in speech processing because of its waiting real-world applications, it is attractive to evaluate the performance using auditory models as features. Firstly, this study rums at improving the results for speaker identification. The improvements were made through the use of parameterized feature-sets together with the application of cepstral mean removal for channel equalization. The study is further extended to compare an auditory-based model, the Ensemble Interval Histogram, with mel-scale features, which was shown to perform almost error-free in clean speech. The previous studies of Elli to be more robust to noise were conducted on speaker dependent, small population, isolated words and now are extended to speaker independent, larger population, continuous speech. This study investigates whether the Elli representation is more resistant to telephone noise than mel-cepstrum as was shown in the previous studies, when now for the first time, it is applied for speaker identification task using the state-of-the-art Gaussian mixture model system

    Robust speaker diarization for meetings

    Get PDF
    Aquesta tesi doctoral mostra la recerca feta en l'àrea de la diarització de locutor per a sales de reunions. En la present s'estudien els algorismes i la implementació d'un sistema en diferit de segmentació i aglomerat de locutor per a grabacions de reunions a on normalment es té accés a més d'un micròfon per al processat. El bloc més important de recerca s'ha fet durant una estada al International Computer Science Institute (ICSI, Berkeley, Caligornia) per un període de dos anys.La diarització de locutor s'ha estudiat força per al domini de grabacions de ràdio i televisió. La majoria dels sistemes proposats utilitzen algun tipus d'aglomerat jeràrquic de les dades en grups acústics a on de bon principi no se sap el número de locutors òptim ni tampoc la seva identitat. Un mètode molt comunment utilitzat s'anomena "bottom-up clustering" (aglomerat de baix-a-dalt), amb el qual inicialment es defineixen molts grups acústics de dades que es van ajuntant de manera iterativa fins a obtenir el nombre òptim de grups tot i acomplint un criteri de parada. Tots aquests sistemes es basen en l'anàlisi d'un canal d'entrada individual, el qual no permet la seva aplicació directa per a reunions. A més a més, molts d'aquests algorisms necessiten entrenar models o afinar els parameters del sistema usant dades externes, el qual dificulta l'aplicabilitat d'aquests sistemes per a dades diferents de les usades per a l'adaptació.La implementació proposada en aquesta tesi es dirigeix a solventar els problemes mencionats anteriorment. Aquesta pren com a punt de partida el sistema existent al ICSI de diarització de locutor basat en l'aglomerat de "baix-a-dalt". Primer es processen els canals de grabació disponibles per a obtindre un sol canal d'audio de qualitat major, a més dínformació sobre la posició dels locutors existents. Aleshores s'implementa un sistema de detecció de veu/silenci que no requereix de cap entrenament previ, i processa els segments de veu resultant amb una versió millorada del sistema mono-canal de diarització de locutor. Aquest sistema ha estat modificat per a l'ús de l'informació de posició dels locutors (quan es tingui) i s'han adaptat i creat nous algorismes per a que el sistema obtingui tanta informació com sigui possible directament del senyal acustic, fent-lo menys depenent de les dades de desenvolupament. El sistema resultant és flexible i es pot usar en qualsevol tipus de sala de reunions pel que fa al nombre de micròfons o la seva posició. El sistema, a més, no requereix en absolute dades d´entrenament, sent més senzill adaptar-lo a diferents tipus de dades o dominis d'aplicació. Finalment, fa un pas endavant en l'ús de parametres que siguin mes robusts als canvis en les dades acústiques. Dos versions del sistema es van presentar amb resultats excel.lents a les evaluacions de RT05s i RT06s del NIST en transcripció rica per a reunions, a on aquests es van avaluar amb dades de dos subdominis diferents (conferencies i reunions). A més a més, es fan experiments utilitzant totes les dades disponibles de les evaluacions RT per a demostrar la viabilitat dels algorisms proposats en aquesta tasca.This thesis shows research performed into the topic of speaker diarization for meeting rooms. It looks into the algorithms and the implementation of an offline speaker segmentation and clustering system for a meeting recording where usually more than one microphone is available. The main research and system implementation has been done while visiting the International Computes Science Institute (ICSI, Berkeley, California) for a period of two years. Speaker diarization is a well studied topic on the domain of broadcast news recordings. Most of the proposed systems involve some sort of hierarchical clustering of the data into clusters, where the optimum number of speakers of their identities are unknown a priory. A very commonly used method is called bottom-up clustering, where multiple initial clusters are iteratively merged until the optimum number of clusters is reached, according to some stopping criterion. Such systems are based on a single channel input, not allowing a direct application for the meetings domain. Although some efforts have been done to adapt such systems to multichannel data, at the start of this thesis no effective implementation had been proposed. Furthermore, many of these speaker diarization algorithms involve some sort of models training or parameter tuning using external data, which impedes its usability with data different from what they have been adapted to.The implementation proposed in this thesis works towards solving the aforementioned problems. Taking the existing hierarchical bottom-up mono-channel speaker diarization system from ICSI, it first uses a flexible acoustic beamforming to extract speaker location information and obtain a single enhanced signal from all available microphones. It then implements a train-free speech/non-speech detection on such signal and processes the resulting speech segments with an improved version of the mono-channel speaker diarization system. Such system has been modified to use speaker location information (then available) and several algorithms have been adapted or created new to adapt the system behavior to each particular recording by obtaining information directly from the acoustics, making it less dependent on the development data.The resulting system is flexible to any meetings room layout regarding the number of microphones and their placement. It is train-free making it easy to adapt to different sorts of data and domains of application. Finally, it takes a step forward into the use of parameters that are more robust to changes in the acoustic data. Two versions of the system were submitted with excellent results in RT05s and RT06s NIST Rich Transcription evaluations for meetings, where data from two different subdomains (lectures and conferences) was evaluated. Also, experiments using the RT datasets from all meetings evaluations were used to test the different proposed algorithms proving their suitability to the task.Postprint (published version

    Word And Speaker Recognition System

    Get PDF
    In this report, a system which combines user dependent Word Recognition and text dependent speaker recognition is described. Word recognition is the process of converting an audio signal, captured by a microphone, to a word. Speaker Identification is the ability to recognize a person identity base on the specific word he/she uttered. A person's voice contains various parameters that convey information such as gender, emotion, health, attitude and identity. Speaker recognition identifies who is the speaker based on the unique voiceprint from the speech data. Voice Activity Detection (VAD), Spectral Subtraction (SS), Mel-Frequency Cepstrum Coefficient (MFCC), Vector Quantization (VQ), Dynamic Time Warping (DTW) and k-Nearest Neighbour (k-NN) are methods used in word recognition part of the project to implement using MATLAB software. For Speaker Recognition part, Vector Quantization (VQ) is used. The recognition rate for word and speaker recognition system that was successfully implemented is 84.44% for word recognition while for speaker recognition is 54.44%

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    SPEECH RECOGNITION FOR CONNECTED WORD USING CEPSTRAL AND DYNAMIC TIME WARPING ALGORITHMS

    Get PDF
    Speech Recognition or Speech Recognizer (SR) has become an important tool for people with physical disabilities when handling Home Automation (HA) appliances. This technology is expected to improve the daily life of the elderly and the disabled so that they are always in control over their lives, and continue to live independently, to learn and stay involved in social life. The goal of the research is to solve the constraints of current Malay SR that is still in its infancy stage where there is limited research in Malay words, especially for HA applications. Since, most of the previous works were confined to wired microphone; this limitation of using wireless microphone type makes it an important area of the research. Research was carried out to develop SR word model for five (5) Malay words and five (5) English words as commands to activate and deactivate home appliances

    Semi-continuous hidden Markov models for automatic speaker verification

    Get PDF

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore