577 research outputs found

    Kernel-based Inference of Functions over Graphs

    Get PDF
    The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting -- and prevalent in several fields of study -- problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently by the signal processing on graphs community. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The herein analytical discussion is complemented by a set of numerical examples, which showcase the effectiveness of the presented techniques, as well as their merits related to state-of-the-art methods.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018). This chapter surveys recent work on kernel-based inference of functions over graphs including arXiv:1612.03615 and arXiv:1605.07174 and arXiv:1711.0930

    The development and application of metaheuristics for problems in graph theory: A computational study

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.It is known that graph theoretic models have extensive application to real-life discrete optimization problems. Many of these models are NP-hard and, as a result, exact methods may be impractical for large scale problem instances. Consequently, there is a great interest in developing e±cient approximate methods that yield near-optimal solutions in acceptable computational times. A class of such methods, known as metaheuristics, have been proposed with success. This thesis considers some recently proposed NP-hard combinatorial optimization problems formulated on graphs. In particular, the min- imum labelling spanning tree problem, the minimum labelling Steiner tree problem, and the minimum quartet tree cost problem, are inves- tigated. Several metaheuristics are proposed for each problem, from classical approximation algorithms to novel approaches. A compre- hensive computational investigation in which the proposed methods are compared with other algorithms recommended in the literature is reported. The results show that the proposed metaheuristics outper- form the algorithms recommended in the literature, obtaining optimal or near-optimal solutions in short computational running times. In addition, a thorough analysis of the implementation of these methods provide insights for the implementation of metaheuristic strategies for other graph theoretic problems

    A Novel Hybrid Feature Selection Algorithm for Hierarchical Classification

    Get PDF
    Feature selection is a widespread preprocessing step in the data mining field. One of its purposes is to reduce the number of original dataset features to improve a predictive model’s performance. Despite the benefits of feature selection for the classification task, to the best of our knowledge, few studies in the literature address feature selection for the hierarchical classification context. This paper proposes a novel feature selection method based on the general variable neighborhood search metaheuristic, combining a filter and a wrapper step, wherein a global model hierarchical classifier evaluates feature subsets. We used twelve datasets from the proteins and images domains to perform computational experiments to validate the effect of the proposed algorithm on classification performance when using two global hierarchical classifiers proposed in the literature. Statistical tests showed that using our method for feature selection led to predictive performances that were consistently better than or equivalent to that obtained by using all features with the benefit of reducing the number of features needed, which justifies its efficiency for the hierarchical classification scenario

    Management And Security Of Multi-Cloud Applications

    Get PDF
    Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers\u27 virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the use of multi-cloud management and innovative techniques for placement and performance management. We consider two classes of distributed applications – the virtual network services and the next generation of healthcare – that would benefit immensely from deployment over multiple clouds. This thesis deals with the design and development of new processes and algorithms to enable these classes of applications. We have evolved a method for optimization of multi-cloud platforms that will pave the way for obtaining optimized placement for both classes of services. The approach that we have followed for placement itself is predictive cost optimized latency controlled virtual resource placement for both types of applications. To improve the availability of virtual network services, we have made innovative use of the machine and deep learning for developing a framework for fault detection and localization. Finally, to secure patient data flowing through the wide expanse of sensors, cloud hierarchy, virtualized network, and visualization domain, we have evolved hierarchical autoencoder models for data in motion between the IoT domain and the multi-cloud domain and within the multi-cloud hierarchy

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Memetic micro-genetic algorithms for cancer data classification

    Get PDF
    Fast and precise medical diagnosis of human cancer is crucial for treatment decisions. Gene selection consists of identifying a set of informative genes from microarray data to allow high predictive accuracy in human cancer classification. This task is a combinatorial search problem, and optimisation methods can be applied for its resolution. In this paper, two memetic micro-genetic algorithms (MμV1 and MμV2) with different hybridisation approaches are proposed for feature selection of cancer microarray data. Seven gene expression datasets are used for experimentation. The comparison with stochastic state-of-the-art optimisation techniques concludes that problem-dependent local search methods combined with micro-genetic algorithms improve feature selection of cancer microarray data.Fil: Rojas, Matias Gabriel. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Vidal, Pablo Javier. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentin

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    • …
    corecore