1,947 research outputs found

    Intelligent fuzzy controller for event-driven real time systems

    Get PDF
    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data

    A 16 [email protected] Mixed-Signal Programmable Fuzzy Controller CMOS-1μm Chip

    Get PDF
    We present a fuzzy inference chip capable to evaluate 16 programmable rules at a speed of 2.5Mflips (2.5 × 10 6 fuzzy inferences per second) with 8.6mW power consumption. It occupies 2.89mm 2 (including pads) in a CMOS 1μm single-poly technology. Measurements are given to demonstrate its performance. All the operations needed for fuzzy inference are realized on-chip using analog circuitry compatible with standard VLSI CMOS technologies. On-chip digital control and memory circuitry is also incorporated for programmability. The chip architecture and circuitry are based on our design methodology for neurofuzzy systems reported in [1]. A few architectural modifications are made to share circuitry among rules and, thus, obtain reduced area and power consumption. The chip parameters can be learned in situ, for operation in a changing environment, by using dedicated hardware-compatible learning algorithms [1][8

    WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell

    Get PDF
    During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations

    An ART1 microchip and its use in multi-ART1 systems

    Get PDF
    Recently, a real-time clustering microchip neural engine based on the ART1 architecture has been reported. Such chip is able to cluster 100-b patterns into up to 18 categories at a speed of 1.8 μs per pattern. However, that chip rendered an extremely high silicon area consumption of 1 cm2, and consequently an extremely low yield of 6%. Redundant circuit techniques can be introduced to improve yield performance at the cost of further increasing chip size. In this paper we present an improved ART1 chip prototype based on a different approach to implement the most area consuming circuit elements of the first prototype: an array of several thousand current sources which have to match within a precision of around 1%. Such achievement was possible after a careful transistor mismatch characterization of the fabrication process (ES2-1.0 μm CMOS). A new prototype chip has been fabricated which can cluster 50-b input patterns into up to ten categories. The chip has 15 times less area, shows a yield performance of 98%, and presents the same precision and speed than the previous prototype. Due to its higher robustness multichip systems are easily assembled. As a demonstration we show results of a two-chip ART1 system, and of an ARTMAP system made of two ART1 chips and an extra interfacing chip

    Neuro-fuzzy chip to handle complex tasks with analog performance

    Get PDF
    This Paper presents a mixed-signal neuro-fuzzy controller chip which, in terms of power consumption, input-output delay and precision performs as a fully analog implementation. However, it has much larger complexity than its purely analog counterparts. This combination of performance and complexity is achieved through the use of a mixed-signal architecture consisting of a programmable analog core of reduced complexity, and a strategy, and the associated mixed-signal circuitry, to cover the whole input space through the dynamic programming of this core [1]. Since errors and delays are proportional to the reduced number of fuzzy rules included in the analog core, they are much smaller than in the case where the whole rule set is implemented by analog circuitry. Also, the area and the power consumption of the new architecture are smaller than those of its purely analog counterparts simply because most rules are implemented through programming. The Paper presents a set of building blocks associated to this architecture, and gives results for an exemplary prototype. This prototype, called MFCON, has been realized in a CMOS 0.7μm standard technology. It has two inputs, implements 64 rules and features 500ns of input to output delay with 16mW of power consumption. Results from the chip in a control application with a DC motor are also provided

    Neuro-fuzzy chip to handle complex tasks with analog performance

    Get PDF
    This paper presents a mixed-signal neuro-fuzzy controller chip which, in terms of power consumption, input–output delay, and precision, performs as a fully analog implementation. However, it has much larger complexity than its purely analog counterparts. This combination of performance and complexity is achieved through the use of a mixed-signal architecture consisting of a programmable analog core of reduced complexity, and a strategy, and the associated mixed-signal circuitry, to cover the whole input space through the dynamic programming of this core. Since errors and delays are proportional to the reduced number of fuzzy rules included in the analog core, they are much smaller than in the case where the whole rule set is implemented by analog circuitry. Also, the area and the power consumption of the new architecture are smaller than those of its purely analog counterparts simply because most rules are implemented through programming. The Paper presents a set of building blocks associated to this architecture, and gives results for an exemplary prototype. This prototype, called multiplexing fuzzy controller (MFCON), has been realized in a CMOS 0.7 um standard technology. It has two inputs, implements 64 rules, and features 500 ns of input to output delay with 16-mW of power consumption. Results from the chip in a control application with a dc motor are also provided

    A Modular Programmable CMOS Analog Fuzzy Controller Chip

    Get PDF
    We present a highly modular fuzzy inference analog CMOS chip architecture with on-chip digital programmability. This chip consists of the interconnection of parameterized instances of two different kind of blocks, namely label blocks and rule blocks. The architecture realizes a lattice partition of the universe of discourse, which at the hardware level means that the fuzzy labels associated to every input (realized by the label blocks) are shared among the rule blocks. This reduces the area and power consumption and is the key point for chip modularity. The proposed architecture is demonstrated through a 16-rule two input CMOS 1-μm prototype which features an operation speed of 2.5 Mflips (2.5×10^6 fuzzy inferences per second) with 8.6 mW power consumption. Core area occupation of this prototype is of only 1.6 mm 2 including the digital control and memory circuitry used for programmability. Because of the architecture modularity the number of inputs and rules can be increased with any hardly design effort.This work was supported in part by the Spanish C.I.C.Y.T under Contract TIC96-1392-C02- 02 (SIVA)
    corecore