512 research outputs found

    A VLSI Array Architecture for Hough Transform

    No full text
    In this article, an asynchronous array architecture for straight line Hough Transform (HT) is proposed using a scaling free modified CORDIC (Co-Ordinate Rotation Digital Computer) unit as a basic Processing Element (PE). It exhibits four-fold angle parallelism by dividing the Hough space into four subspaces to reduce the computation burden to 25 % of the conventional requirements. A distributed accumulator arrangement scheme is adopted to ensure conflict free voting operation. The architecture is then extended to compute circular and elliptic HT given their centers and orientations. Compared to some other existing architectures, this one exhibits higher computation speed

    A Novel Optical/digital Processing System for Pattern Recognition

    Get PDF
    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network

    Pre-processing of integral images for 3-D displays

    Get PDF
    This paper seeks to explore a method to accurately correct geometric distortions caused during the capture of three dimensional (3-D) integral images. Such distortions are rotational and scaling errors which, if not corrected, will cause banding and moire effects on the replayed image. The method for calculating the angle of deviation in the 3-D Integral Images is based on Hough Transform. It allows detection of the angle necessary for correction of the rotational error. Experiments have been conducted on a number of 3-D integral image samples and it has been found that the proposed method produces results with accuracy of 0.05 deg

    Computer Vision System-On-Chip Designs for Intelligent Vehicles

    Get PDF
    Intelligent vehicle technologies are growing rapidly that can enhance road safety, improve transport efficiency, and aid driver operations through sensors and intelligence. Advanced driver assistance system (ADAS) is a common platform of intelligent vehicle technologies. Many sensors like LiDAR, radar, cameras have been deployed on intelligent vehicles. Among these sensors, optical cameras are most widely used due to their low costs and easy installation. However, most computer vision algorithms are complicated and computationally slow, making them difficult to be deployed on power constraint systems. This dissertation investigates several mainstream ADAS applications, and proposes corresponding efficient digital circuits implementations for these applications. This dissertation presents three ways of software / hardware algorithm division for three ADAS applications: lane detection, traffic sign classification, and traffic light detection. Using FPGA to offload critical parts of the algorithm, the entire computer vision system is able to run in real time while maintaining a low power consumption and a high detection rate. Catching up with the advent of deep learning in the field of computer vision, we also present two deep learning based hardware implementations on application specific integrated circuits (ASIC) to achieve even lower power consumption and higher accuracy. The real time lane detection system is implemented on Xilinx Zynq platform, which has a dual core ARM processor and FPGA fabric. The Xilinx Zynq platform integrates the software programmability of an ARM processor with the hardware programmability of an FPGA. For the lane detection task, the FPGA handles the majority of the task: region-of-interest extraction, edge detection, image binarization, and hough transform. After then, the ARM processor takes in hough transform results and highlights lanes using the hough peaks algorithm. The entire system is able to process 1080P video stream at a constant speed of 69.4 frames per second, realizing real time capability. An efficient system-on-chip (SOC) design which classifies up to 48 traffic signs in real time is presented in this dissertation. The traditional histogram of oriented gradients (HoG) and support vector machine (SVM) are proven to be very effective on traffic sign classification with an average accuracy rate of 93.77%. For traffic sign classification, the biggest challenge comes from the low execution efficiency of the HoG on embedded processors. By dividing the HoG algorithm into three fully pipelined stages, as well as leveraging extra on-chip memory to store intermediate results, we successfully achieved a throughput of 115.7 frames per second at 1080P resolution. The proposed generic HoG hardware implementation could also be used as an individual IP core by other computer vision systems. A real time traffic signal detection system is implemented to present an efficient hardware implementation of the traditional grass-fire blob detection. The traditional grass-fire blob detection method iterates the input image multiple times to calculate connected blobs. In digital circuits, five extra on-chip block memories are utilized to save intermediate results. By using additional memories, all connected blob information could be obtained through one-pass image traverse. The proposed hardware friendly blob detection can run at 72.4 frames per second with 1080P video input. Applying HoG + SVM as feature extractor and classifier, 92.11% recall rate and 99.29% precision rate are obtained on red lights, and 94.44% recall rate and 98.27% precision rate on green lights. Nowadays, convolutional neural network (CNN) is revolutionizing computer vision due to learnable layer by layer feature extraction. However, when coming into inference, CNNs are usually slow to train and slow to execute. In this dissertation, we studied the implementation of principal component analysis based network (PCANet), which strikes a balance between algorithm robustness and computational complexity. Compared to a regular CNN, the PCANet only needs one iteration training, and typically at most has a few tens convolutions on a single layer. Compared to hand-crafted features extraction methods, the PCANet algorithm well reflects the variance in the training dataset and can better adapt to difficult conditions. The PCANet algorithm achieves accuracy rates of 96.8% and 93.1% on road marking detection and traffic light detection, respectively. Implementing in Synopsys 32nm process technology, the proposed chip can classify 724,743 32-by-32 image candidates in one second, with only 0.5 watt power consumption. In this dissertation, binary neural network (BNN) is adopted as a potential detector for intelligent vehicles. The BNN constrains all activations and weights to be +1 or -1. Compared to a CNN with the same network configuration, the BNN achieves 50 times better resource usage with only 1% - 2% accuracy loss. Taking car detection and pedestrian detection as examples, the BNN achieves an average accuracy rate of over 95%. Furthermore, a BNN accelerator implemented in Synopsys 32nm process technology is presented in our work. The elastic architecture of the BNN accelerator makes it able to process any number of convolutional layers with high throughput. The BNN accelerator only consumes 0.6 watt and doesn\u27t rely on external memory for storage

    Computer Vision System-On-Chip Designs for Intelligent Vehicles

    Get PDF
    Intelligent vehicle technologies are growing rapidly that can enhance road safety, improve transport efficiency, and aid driver operations through sensors and intelligence. Advanced driver assistance system (ADAS) is a common platform of intelligent vehicle technologies. Many sensors like LiDAR, radar, cameras have been deployed on intelligent vehicles. Among these sensors, optical cameras are most widely used due to their low costs and easy installation. However, most computer vision algorithms are complicated and computationally slow, making them difficult to be deployed on power constraint systems. This dissertation investigates several mainstream ADAS applications, and proposes corresponding efficient digital circuits implementations for these applications. This dissertation presents three ways of software / hardware algorithm division for three ADAS applications: lane detection, traffic sign classification, and traffic light detection. Using FPGA to offload critical parts of the algorithm, the entire computer vision system is able to run in real time while maintaining a low power consumption and a high detection rate. Catching up with the advent of deep learning in the field of computer vision, we also present two deep learning based hardware implementations on application specific integrated circuits (ASIC) to achieve even lower power consumption and higher accuracy. The real time lane detection system is implemented on Xilinx Zynq platform, which has a dual core ARM processor and FPGA fabric. The Xilinx Zynq platform integrates the software programmability of an ARM processor with the hardware programmability of an FPGA. For the lane detection task, the FPGA handles the majority of the task: region-of-interest extraction, edge detection, image binarization, and hough transform. After then, the ARM processor takes in hough transform results and highlights lanes using the hough peaks algorithm. The entire system is able to process 1080P video stream at a constant speed of 69.4 frames per second, realizing real time capability. An efficient system-on-chip (SOC) design which classifies up to 48 traffic signs in real time is presented in this dissertation. The traditional histogram of oriented gradients (HoG) and support vector machine (SVM) are proven to be very effective on traffic sign classification with an average accuracy rate of 93.77%. For traffic sign classification, the biggest challenge comes from the low execution efficiency of the HoG on embedded processors. By dividing the HoG algorithm into three fully pipelined stages, as well as leveraging extra on-chip memory to store intermediate results, we successfully achieved a throughput of 115.7 frames per second at 1080P resolution. The proposed generic HoG hardware implementation could also be used as an individual IP core by other computer vision systems. A real time traffic signal detection system is implemented to present an efficient hardware implementation of the traditional grass-fire blob detection. The traditional grass-fire blob detection method iterates the input image multiple times to calculate connected blobs. In digital circuits, five extra on-chip block memories are utilized to save intermediate results. By using additional memories, all connected blob information could be obtained through one-pass image traverse. The proposed hardware friendly blob detection can run at 72.4 frames per second with 1080P video input. Applying HoG + SVM as feature extractor and classifier, 92.11% recall rate and 99.29% precision rate are obtained on red lights, and 94.44% recall rate and 98.27% precision rate on green lights. Nowadays, convolutional neural network (CNN) is revolutionizing computer vision due to learnable layer by layer feature extraction. However, when coming into inference, CNNs are usually slow to train and slow to execute. In this dissertation, we studied the implementation of principal component analysis based network (PCANet), which strikes a balance between algorithm robustness and computational complexity. Compared to a regular CNN, the PCANet only needs one iteration training, and typically at most has a few tens convolutions on a single layer. Compared to hand-crafted features extraction methods, the PCANet algorithm well reflects the variance in the training dataset and can better adapt to difficult conditions. The PCANet algorithm achieves accuracy rates of 96.8% and 93.1% on road marking detection and traffic light detection, respectively. Implementing in Synopsys 32nm process technology, the proposed chip can classify 724,743 32-by-32 image candidates in one second, with only 0.5 watt power consumption. In this dissertation, binary neural network (BNN) is adopted as a potential detector for intelligent vehicles. The BNN constrains all activations and weights to be +1 or -1. Compared to a CNN with the same network configuration, the BNN achieves 50 times better resource usage with only 1% - 2% accuracy loss. Taking car detection and pedestrian detection as examples, the BNN achieves an average accuracy rate of over 95%. Furthermore, a BNN accelerator implemented in Synopsys 32nm process technology is presented in our work. The elastic architecture of the BNN accelerator makes it able to process any number of convolutional layers with high throughput. The BNN accelerator only consumes 0.6 watt and doesn\u27t rely on external memory for storage

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    Parametrized Architecture for Hough Transform Recursive Evaluation

    Get PDF
    Paper submitted to International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP), Barcelona, España, 2003.The Hough Transform (HT) is a useful technique in image segmentation, concretely for geometrical primitive detection. A Convolution-Based Recursive Method (CBRM) is presented for function evaluation. In this generic approach, calculations are carried out by an unique parametric formula which provides all function points by successive iterations. The case of combined trigonometric functions involved in the calculation of the HT is analyzed under this scope. An architecture for reconfigurable FPGA-based hardware, using Distributed Arithmetic (DA) implements the design. The CBRM implementation provides improvements such as memory and hardware resources saving, as well as a good balance between speed and error-dependable precision

    Hough Transform recursive evaluation using Distributed Arithmetic

    Get PDF
    Paper submitted to the IFIP International Conference on Very Large Scale Integration (VLSI-SOC), Darmstadt, Germany, 2003.The Hough Transform (HT) is a useful technique in image segmentation, concretely for geometrical primitive detection. A Convolution-Based Recursive Method (CBRM) is presented for generic function evaluation. In this approach, calculations are carried out by a unique parametric formula which provides all function points by successive iteration. The case of combined trigonometric functions involved in the calculation of the HT is analyzed under this scope. An architecture for reconfigurable FPGA-based hardware, using Distributed Arithmetic (DA) implements the design. It provides memory and hardware resource saving as well as speed improvements according to the experiments carried out with the HT

    A Specialized Processor for Track Reconstruction at the LHC Crossing Rate

    Full text link
    We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-μ\mus latencies when this algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout.Comment: Presented by G.Punzi at the conference on "Instrumentation for Colliding Beam Physics" (INSTR14), 24 Feb to 1 Mar 2014, Novosibirsk, Russia. Submitted to JINST proceeding

    An Efficient Reconfigurable Architecture for Fingerprint Recognition

    Get PDF
    The fingerprint identification is an efficient biometric technique to authenticate human beings in real-time Big Data Analytics. In this paper, we propose an efficient Finite State Machine (FSM) based reconfigurable architecture for fingerprint recognition. The fingerprint image is resized, and Compound Linear Binary Pattern (CLBP) is applied on fingerprint, followed by histogram to obtain histogram CLBP features. Discrete Wavelet Transform (DWT) Level 2 features are obtained by the same methodology. The novel matching score of CLBP is computed using histogram CLBP features of test image and fingerprint images in the database. Similarly, the DWT matching score is computed using DWT features of test image and fingerprint images in the database. Further, the matching scores of CLBP and DWT are fused with arithmetic equation using improvement factor. The performance parameters such as TSR (Total Success Rate), FAR (False Acceptance Rate), and FRR (False Rejection Rate) are computed using fusion scores with correlation matching technique for FVC2004 DB3 Database. The proposed fusion based VLSI architecture is synthesized on Virtex xc5vlx30T-3 FPGA board using Finite State Machine resulting in optimized parameters
    corecore