4,381 research outputs found

    VLSI top-down design based on the separation of hierarchies

    Get PDF
    Despite the presence of structure, interactions between the three views on VLSI design still lead to lengthy iterations. By separating the hierarchies for the respective views, the interactions are reduced. This separated hierarchy allows top-down design with functional abstractions as exemplified by an experimental self-timed CMOS RISC computer design

    On the design of a real-time volume rendering engine

    Get PDF
    An architecture for a Real-Time Volume Rendering Engine (RT-VRE) is given, capable of computing 750 Ă— 750 Ă— 512 samples from a 3D dataset at a rate of 25 images per second. The RT-VRE uses for this purpose 64 dedicated rendering chips, cooperating with 16 RISC-processors. A plane interpolator circuit and a composition circuit, both capable to operate at very high speeds, have been designed for a 1.6 micron VLSI process. Both the interpolator and composition circuit are back from production. They have been tested and both complied with our specifications

    Micro-threading and FPGA implementation of a RISC microprocessor : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Appendix E removed due to copyright restrictions. Articles are available in the print copy held in the libraryThis thesis is the outcome of research in two areas of computer technology: microprocessor and multi-processor architectures (specifically from the perspective of how differently they tolerate highly-latent and non-deterministic events), and hardware design of complex digital systems containing both datapath and control (particularly microprocessors). This thesis starts by pointing out that in order to achieve high processing speeds, current popular superscalar microprocessors (e.g. Intel Pentiums, Digital Alpha, etc) rely heavily on the technique of speculating the outcome of instruction flow in order to predict the behaviour of non-deterministic computing operations (as in loading operands from high-latency memory into the processor). This is fine only if the speculation is correct. But, what if it isn't? If the speculation fails, this would mean that the processor has to abandon its current decision (which now proved to be the wrong one) for the instruction flow path taken and to start all over again with the other path (the actual correct one). This is a waste of valuable processing time and hardware resources and a reduction of performance when speculation fails. Therefore, these processors can achieve high performance only when the majority of speculations are successful (being able to predict the right path). In an attempt to overcome the above shortcomings, the first part of this thesis is an investigation of the novel vector micro-threading architecture as an alternative approach to the current superscalar-based speculative microprocessor designs. Micro-threading is based on the not-so-novel multithreading technique, which avoids speculation altogether and instead, starts running a different thread of instructions while waiting for the non-determinism to be resolved. This utilizes the chip resources more efficiently without waste of any processing power. The rest of this thesis focuses on the baseline RISC processor platform, the MIPS R2000, which is reviewed first then partially synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and tested. This is conducted in order for future research to build upon and add the micro-threading architectural add-ons and modifications. Keywords: Micro-threading, Latency Tolerance, FPGA Synthesis, RISC Architecture, MIPS R2000 processor, VHDL

    Design of multimedia processor based on metric computation

    Get PDF
    Media-processing applications, such as signal processing, 2D and 3D graphics rendering, and image compression, are the dominant workloads in many embedded systems today. The real-time constraints of those media applications have taxing demands on today's processor performances with low cost, low power and reduced design delay. To satisfy those challenges, a fast and efficient strategy consists in upgrading a low cost general purpose processor core. This approach is based on the personalization of a general RISC processor core according the target multimedia application requirements. Thus, if the extra cost is justified, the general purpose processor GPP core can be enforced with instruction level coprocessors, coarse grain dedicated hardware, ad hoc memories or new GPP cores. In this way the final design solution is tailored to the application requirements. The proposed approach is based on three main steps: the first one is the analysis of the targeted application using efficient metrics. The second step is the selection of the appropriate architecture template according to the first step results and recommendations. The third step is the architecture generation. This approach is experimented using various image and video algorithms showing its feasibility
    • …
    corecore