7 research outputs found

    Automated Extraction of Road Information from Mobile Laser Scanning Data

    Get PDF
    Effective planning and management of transportation infrastructure requires adequate geospatial data. Existing geospatial data acquisition techniques based on conventional route surveys are very time consuming, labor intensive, and costly. Mobile laser scanning (MLS) technology enables a rapid collection of enormous volumes of highly dense, irregularly distributed, accurate geo-referenced point cloud data in the format of three-dimensional (3D) point clouds. Today, more and more commercial MLS systems are available for transportation applications. However, many transportation engineers have neither interest in the 3D point cloud data nor know how to transform such data into their computer-aided model (CAD) formatted geometric road information. Therefore, automated methods and software tools for rapid and accurate extraction of 2D/3D road information from the MLS data are urgently needed. This doctoral dissertation deals with the development and implementation aspects of a novel strategy for the automated extraction of road information from the MLS data. The main features of this strategy include: (1) the extraction of road surfaces from large volumes of MLS point clouds, (2) the generation of 2D geo-referenced feature (GRF) images from the road-surface data, (3) the exploration of point density and intensity of MLS data for road-marking extraction, and (4) the extension of tensor voting (TV) for curvilinear pavement crack extraction. In accordance with this strategy, a RoadModeler prototype with three computerized algorithms was developed. They are: (1) road-surface extraction, (2) road-marking extraction, and (3) pavement-crack extraction. Four main contributions of this development can be summarized as follows. Firstly, a curb-based approach to road surface extraction with assistance of the vehicle’s trajectory is proposed and implemented. The vehicle’s trajectory and the function of curbs that separate road surfaces from sidewalks are used to efficiently separate road-surface points from large volume of MLS data. The accuracy of extracted road surfaces is validated with manually selected reference points. Secondly, the extracted road enables accurate detection of road markings and cracks for transportation-related applications in road traffic safety. To further improve computational efficiency, the extracted 3D road data are converted into 2D image data, termed as a GRF image. The GRF image of the extracted road enables an automated road-marking extraction algorithm and an automated crack detection algorithm, respectively. Thirdly, the automated road-marking extraction algorithm applies a point-density-dependent, multi-thresholding segmentation to the GRF image to overcome unevenly distributed intensity caused by the scanning range, the incidence angle, and the surface characteristics of an illuminated object. The morphological operation is then implemented to deal with the presence of noise and incompleteness of the extracted road markings. Fourthly, the automated crack extraction algorithm applies an iterative tensor voting (ITV) algorithm to the GRF image for crack enhancement. The tensor voting, a perceptual organization method that is capable of extracting curvilinear structures from the noisy and corrupted background, is explored and extended into the field of crack detection. The successful development of three algorithms suggests that the RoadModeler strategy offers a solution to the automated extraction of road information from the MLS data. Recommendations are given for future research and development to be conducted to ensure that this progress goes beyond the prototype stage and towards everyday use

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    A robust surface matching technique for coastal geohazard monitoring

    Get PDF
    Coastal geohazards, such as landslides, mudflows, and rockfalls, represent a major driver for coastal change in many regions of the world, and often impinge on aspects of the human and natural environment. In such cases, there is a pressing need for the development of more effective monitoring strategies, particularly given the uncertainties associated with the impact of future climate change. Traditional survey approaches tend to suffer from limited spatial resolution, while contemporary techniques are generally unsuitable in isolation, due to the often complex coastal topography. To address these issues, this thesis presents the development and application of a strategy for integrated remote monitoring of coastal geohazards. The monitoring strategy is underpinned by a robust least squares surface matching technique, which has been developed to facilitate change detection through the reliable reconciliation of multi-temporal, multi-sensor datasets in dynamic environments. Specifically, this research has concentrated on integrating the developing techniques of airborne and terrestrial laser-scanning. In addition, archival aerial photography has been incorporated in order to provide a historical context for analysis of geohazard development. Robust surface matching provides a mechanism for reliable registration of DEM surfaces contaminated by regions of difference, which may arise through geohazard activity or vegetation change. The development of this algorithm has been presented, and its potential demonstrated through testing with artificial datasets. The monitoring strategy was applied to the soft-cliff test site of Filey Bay, North Yorkshire. This highlighted the viability of the robust matching algorithm, demonstrating the effectiveness of this technique for absolute orientation of DEMs derived from archival aerial photography. Furthermore, the complementary qualities of airborne and terrestrial laser scanning have been confirmed, particularly in relation to their value for multi-scale terrain monitoring. Issues of transferability were explored through application of the monitoring strategy to the hard rock environment of Whitby East Cliff. Investigations in this challenging environment confirmed the potential of the robust matching algorithm, and highlighted a number of valuable issues in relation to the monitoring techniques. Investigations at both test sites enabled in-depth assessment and quantification of geohazard activity over extended periods of time.EThOS - Electronic Theses Online ServiceEnglish Heritage : British Geological SurveyGBUnited Kingdo

    The exploitation of acoustic-to-seismic coupling for the determination of soil properties

    Get PDF
    Laboratory measurements of three predicted wave types (two compressional or P-waves and one shear S-wave) have been made in artificial soils. The Type-I P and S-wave are predicted to be most sensitive to the macroscopic elastic properties of the frame, whilst the Type II P-wave is predicted to be most sensitive to the hydrodynamic material properties. A loudspeaker source has been used for the preferential excitation of the Type II P-wave whilst preferential excitement of the Type-I P-wave has been accomplished using a mechanical shaker. Probe microphone measurements of the Type-II wave allowed the flow resistivity and tortuosity of the material to be determined using a rigid frame model, whilst deduction of elastic moduli has been made from signals received at buried geophones. It has been shown that microphone signals include Type-I P-wave energy in a high flow resistivity soil. Acoustically deduced soil properties are consistent with mechanically derived values. A systematic investigation of outdoor measurements of acoustic-to-seismic coupling ratio has been made. From the measurements, it has been found that the geophone-ground coupling has a great effect upon the measured coupling ratio. In-situ calibration methods have been developed to overcome this problem. whilst the novel use of a Laser Doppler Vibrometer has been proposed to provide a completely non-invasive method of measuring motion in soils. The measured coupling ratio has been compared with theoretical predictions, using a modified Bio-Sto11 formulation. The model can be used to predict values of flow resistivity, porosity, bulk and shear moduli and layer depths. Reasonable agreement has been obtained between the model and data. Procedures that exploit acoustic-to-seismic coupling data and models to determine soil properties have been developed and used to measure the soil properties of friable agricultural soils where more standard investigation techniques have proved unsuitable

    Reports of planetary geology and geophysics program, 1988

    Get PDF
    This is a compilation of abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1988. Each report reflects significant accomplishments within the area of the author's funded grant or contract
    corecore