5,902 research outputs found

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    Open source bioimage informatics for cell biology

    Get PDF
    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery

    Travails in the third dimension: a critical evaluation of three-dimensional geographical visualization

    Get PDF
    Several broad questions are posed about the role of the third dimension in data visualization. First, how far have we come in developing effective 3D displays for the analysis of spatial and other data? Second, when is it appropriate to use 3D techniques in visualising data, which 3D techniques are most appropriate for particular applications, and when might 2D approaches be more appropriate? (Indeed, is 3D always better than 2D?) Third, what can we learn from other communities in which 3D graphics and visualization technologies have been developed? And finally, what are the key R&D challenges in making effective use of the third dimension for visualising data across the spatial and related sciences? Answers to these questions will be based on several lines of evidence: the extensive literature on data and information visualization; visual perception research; computer games technology; and the author’s experiments with a prototype 3D data visualization system

    Travails in the third dimension: a critical evaluation of three-dimensional geographical visualization

    Get PDF
    Several broad questions are posed about the role of the third dimension in data visualization. First, how far have we come in developing effective 3D displays for the analysis of spatial and other data? Second, when is it appropriate to use 3D techniques in visualising data, which 3D techniques are most appropriate for particular applications, and when might 2D approaches be more appropriate? (Indeed, is 3D always better than 2D?) Third, what can we learn from other communities in which 3D graphics and visualization technologies have been developed? And finally, what are the key R&D challenges in making effective use of the third dimension for visualising data across the spatial and related sciences? Answers to these questions will be based on several lines of evidence: the extensive literature on data and information visualization; visual perception research; computer games technology; and the author’s experiments with a prototype 3D data visualization system
    • …
    corecore