16,515 research outputs found

    Modulated Unit-Norm Tight Frames for Compressed Sensing

    Full text link
    In this paper, we propose a compressed sensing (CS) framework that consists of three parts: a unit-norm tight frame (UTF), a random diagonal matrix and a column-wise orthonormal matrix. We prove that this structure satisfies the restricted isometry property (RIP) with high probability if the number of measurements m=O(slog2slog2n)m = O(s \log^2s \log^2n) for ss-sparse signals of length nn and if the column-wise orthonormal matrix is bounded. Some existing structured sensing models can be studied under this framework, which then gives tighter bounds on the required number of measurements to satisfy the RIP. More importantly, we propose several structured sensing models by appealing to this unified framework, such as a general sensing model with arbitrary/determinisic subsamplers, a fast and efficient block compressed sensing scheme, and structured sensing matrices with deterministic phase modulations, all of which can lead to improvements on practical applications. In particular, one of the constructions is applied to simplify the transceiver design of CS-based channel estimation for orthogonal frequency division multiplexing (OFDM) systems.Comment: submitted to IEEE Transactions on Signal Processin

    Fourier-Stieltjes algebras of locally compact groupoids

    Get PDF
    This paper gives a first step toward extending the theory of Fourier-Stieltjes algebras from groups to groupoids. If G is a locally compact (second countable) groupoid, we show that B(G), the linear span of the Borel positive definite functions on G, is a Banach algebra when represented as an algebra of completely bounded maps on a C^*-algebra associated with G. This necessarily involves identifying equivalent elements of B(G). An example shows that the linear span of the continuous positive definite functions need not be complete. For groups, B(G) is isometric to the Banach space dual of C^*(G). For groupoids, the best analog of that fact is to be found in a representation of B(G) as a Banach space of completely bounded maps from a C^*-algebra associated with G to a C^*-algebra associated with the equivalence relation induced by G. This paper adds weight to the clues in the earlier study of Fourier-Stieltjes algebras that there is a much more general kind of duality for Banach algebras waiting to be explored.Comment: 34 page

    Best possible rates of distribution of dense lattice orbits in homogeneous spaces

    Get PDF
    The present paper establishes upper and lower bounds on the speed of approximation in a wide range of natural Diophantine approximation problems. The upper and lower bounds coincide in many cases, giving rise to optimal results in Diophantine approximation which were inaccessible previously. Our approach proceeds by establishing, more generally, upper and lower bounds for the rate of distribution of dense orbits of a lattice subgroup Γ\Gamma in a connected Lie (or algebraic) group GG, acting on suitable homogeneous spaces G/HG/H. The upper bound is derived using a quantitative duality principle for homogeneous spaces, reducing it to a rate of convergence in the mean ergodic theorem for a family of averaging operators supported on HH and acting on G/ΓG/\Gamma. In particular, the quality of the upper bound on the rate of distribution we obtain is determined explicitly by the spectrum of HH in the automorphic representation on L2(ΓG)L^2(\Gamma\setminus G). We show that the rate is best possible when the representation in question is tempered, and show that the latter condition holds in a wide range of examples

    Optimal covariant measurements: the case of a compact symmetry group and phase observables

    Full text link
    We study various optimality criteria for quantum observables. Observables are represented as covariant positive operator valued measures and we consider the case when the symmetry group is compact. Phase observables are examined as an example
    corecore