8,076 research outputs found

    A Computable Measure of Algorithmic Probability by Finite Approximations with an Application to Integer Sequences

    Get PDF
    Given the widespread use of lossless compression algorithms to approximate algorithmic (Kolmogorov-Chaitin) complexity, and that lossless compression algorithms fall short at characterizing patterns other than statistical ones not different to entropy estimations, here we explore an alternative and complementary approach. We study formal properties of a Levin-inspired measure mm calculated from the output distribution of small Turing machines. We introduce and justify finite approximations mkm_k that have been used in some applications as an alternative to lossless compression algorithms for approximating algorithmic (Kolmogorov-Chaitin) complexity. We provide proofs of the relevant properties of both mm and mkm_k and compare them to Levin's Universal Distribution. We provide error estimations of mkm_k with respect to mm. Finally, we present an application to integer sequences from the Online Encyclopedia of Integer Sequences which suggests that our AP-based measures may characterize non-statistical patterns, and we report interesting correlations with textual, function and program description lengths of the said sequences.Comment: As accepted by the journal Complexity (Wiley/Hindawi

    On the time complexity of 2-tag systems and small universal Turing machines

    Get PDF
    We show that 2-tag systems efficiently simulate Turing machines. As a corollary we find that the small universal Turing machines of Rogozhin, Minsky and others simulate Turing machines in polynomial time. This is an exponential improvement on the previously known simulation time overhead and improves a forty year old result in the area of small universal Turing machines.Comment: Slightly expanded and updated from conference versio

    Problems in number theory from busy beaver competition

    Full text link
    By introducing the busy beaver competition of Turing machines, in 1962, Rado defined noncomputable functions on positive integers. The study of these functions and variants leads to many mathematical challenges. This article takes up the following one: How can a small Turing machine manage to produce very big numbers? It provides the following answer: mostly by simulating Collatz-like functions, that are generalizations of the famous 3x+1 function. These functions, like the 3x+1 function, lead to new unsolved problems in number theory.Comment: 35 page
    corecore