1,339 research outputs found

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Aerospace Applications of Microprocessors

    Get PDF
    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed

    Microprocessor Seminar, phase 2

    Get PDF
    Workshop sessions and papers were devoted to various aspects of microprocessor and large scale integrated circuit technology. Presentations were made on advanced LSI developments for high reliability military and NASA applications. Microprocessor testing techniques were discussed, and test data were presented. High reliability procurement specifications were also discussed

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Post-silicon Validation of Radiation Hardened Microprocessor and SRAM arrays

    Get PDF
    abstract: Digital systems are increasingly pervading in the everyday lives of humans. The security of these systems is a concern due to the sensitive data stored in them. The physically unclonable function (PUF) implemented on hardware provides a way to protect these systems. Static random-access memories (SRAMs) are designed and used as a strong PUF to generate random numbers unique to the manufactured integrated circuit (IC). Digital systems are important to the technological improvements in space exploration. Space exploration requires radiation hardened microprocessors which minimize the functional disruptions in the presence of radiation. The design highly efficient radiation-hardened microprocessor for enabling spacecraft (HERMES) is a radiation-hardened microprocessor with performance comparable to the commercially available designs. These designs are manufactured using a foundry complementary metal-oxide semiconductor (CMOS) 55-nm triple-well process. This thesis presents the post silicon validation results of the HERMES and the PUF mode of SRAM across process corners. Chapter 1 gives an overview of the blocks implemented on the test chip 25. It also talks about the pre-silicon functional verification methodology used for the test chip. Chapter 2 discusses about the post silicon testing setup of test chip 25 and the validation of the setup. Chapter 3 describes the architecture and the test bench of the HERMES along with its testing results. Chapter 4 discusses the test bench and the perl scripts used to test the SRAM along with its testing results. Chapter 5 gives a summary of the post-silicon validation results of the HERMES and the PUF mode of SRAM.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Applications for FPGA's on Nanosatellites

    Get PDF
    This thesis examines the feasibility of using a Field Programmable Gate Array (FPGA) based design on-board a CubeSat-sized nanosatellite. FPGAs are programmable logic devices that allow for the implementation of custom digital hardware on a single Integrated Circuit (IC). By using these FPGAs in spacecraft, more efficient processing can be done by moving the design onto hardware. A variety of different FPGA-based designs are looked at, including a Watchdog Timer (WDT), a Global Positioning System (GPS) receiver, and a camera interface

    Functional Verification Test Time Reduction Through Behavioral Functional Model

    Get PDF
    Design verification is an essential step in every design development process for quality assurance. However, the verification portion is the bottleneck in most of design development which takes up 60% of the overall design development period. As the complexity of the design increases, it increases the verification lead time which will then lead to potential failure of the design to meet market on time. One of the key factor in slowing down the design verification flow is the long simulation time during the pre-silicon functional testing. The long test simulation time issue is seen in NAND Intellectual Property (IP) pre-silicon validation. Therefore in this project, a behavioral Bus Functional Model (BFM) is implemented for NAND IP to improve the test simulation time. The BFM has been successfully implemented to validate NAND IP. Simulation of test with similar functional testing scenarios have been exercised on NAND IP in existing verification environment and in verification environment with BFM integrated. As a result, the BFM is found to have behaved accurately comparing with the existing functional Register Transfer Level (RTL) to validate NAND IP. Comparison has also shown the test simulation time through the environment with BFM integrated using Verilog Compiler Simulator (VCS) had shown significant average improvement of 92.8%. Therefore the implemented BFM is justified to be a suitable use on NAND IP validation

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature
    corecore