270 research outputs found

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Real-Time High-Resolution Multiple-Camera Depth Map Estimation Hardware and Its Applications

    Get PDF
    Depth information is used in a variety of 3D based signal processing applications such as autonomous navigation of robots and driving systems, object detection and tracking, computer games, 3D television, and free view-point synthesis. These applications require high accuracy and speed performances for depth estimation. Depth maps can be generated using disparity estimation methods, which are obtained from stereo matching between multiple images. The computational complexity of disparity estimation algorithms and the need of large size and bandwidth for the external and internal memory make the real-time processing of disparity estimation challenging, especially for high resolution images. This thesis proposes a high-resolution high-quality multiple-camera depth map estimation hardware. The proposed hardware is verified in real-time with a complete system from the initial image capture to the display and applications. The details of the complete system are presented. The proposed binocular and trinocular adaptive window size disparity estimation algorithms are carefully designed to be suitable to real-time hardware implementation by allowing efficient parallel and local processing while providing high-quality results. The proposed binocular and trinocular disparity estimation hardware implementations can process 55 frames per second on a Virtex-7 FPGA at a 1024 x 768 XGA video resolution for a 128 pixel disparity range. The proposed binocular disparity estimation hardware provides best quality compared to existing real-time high-resolution disparity estimation hardware implementations. A novel compressed-look up table based rectification algorithm and its real-time hardware implementation are presented. The low-complexity decompression process of the rectification hardware utilizes a negligible amount of LUT and DFF resources of the FPGA while it does not require the existence of external memory. The first real-time high-resolution free viewpoint synthesis hardware utilizing three-camera disparity estimation is presented. The proposed hardware generates high-quality free viewpoint video in real-time for any horizontally aligned arbitrary camera positioned between the leftmost and rightmost physical cameras. The full embedded system of the depth estimation is explained. The presented embedded system transfers disparity results together with synchronized RGB pixels to the PC for application development. Several real-time applications are developed on a PC using the obtained RGB+D results. The implemented depth estimation based real-time software applications are: depth based image thresholding, speed and distance measurement, head-hands-shoulders tracking, virtual mouse using hand tracking and face tracking integrated with free viewpoint synthesis. The proposed binocular disparity estimation hardware is implemented in an ASIC. The ASIC implementation of disparity estimation imposes additional constraints with respect to the FPGA implementation. These restrictions, their implemented efficient solutions and the ASIC implementation results are presented. In addition, a very high-resolution (82.3 MP) 360°x90° omnidirectional multiple camera system is proposed. The hemispherical camera system is able to view the target locations close to horizontal plane with more than two cameras. Therefore, it can be used in high-resolution 360° depth map estimation and its applications in the future

    THINK Robots

    Get PDF
    Retailers rely on Kiva Systems’ warehouse robots to deliver order-fulfillment services, but current systems are frequently interrupted and require physical barriers to ensure compliance with safety regulations since Kiva does not currently rely on the obstacle detection system to contribute to the functional safety of its overall system. After evaluating operating scenarios and detection technologies, a solution comprised of a stereo vision system to detect static objects and a radio ranging system to identify humans in the vicinity was designed, built, and verified, with the aim of reducing undue downtime and allowing humans and robots to safely interact without physical restrictions

    マルチタスク学習を用いたシーン理解とデータ拡張による複合現実感の向上

    Get PDF
    早大学位記番号:新9140早稲田大

    Cost-effective robot for steep slope crops monitoring

    Get PDF
    This project aims to develop a low cost, simple and robust robot able to autonomously monitorcrops using simple sensors. It will be required do develop robotic sub-systems and integrate them with pre-selected mechanical components, electrical interfaces and robot systems (localization, navigation and perception) using ROS, for wine making regions and maize fields

    POINTING, ACQUISITION, AND TRACKING FOR DIRECTIONAL WIRELESS COMMUNICATIONS NETWORKS

    Get PDF
    Directional wireless communications networks (DWNs) are expected to become a workhorse of the military, as they provide great network capacity in hostile areas where omnidirectional RF systems can put their users in harm's way. These networks will also be able to adapt to new missions, change topologies, use different communications technologies, yet still reliably serve all their terminal users. DWNs also have the potential to greatly expand the capacity of civilian and commercial wireless communication. The inherently narrow beams present in these types of systems require a means of steering them, acquiring the links, and tracking to maintain connectivity. This area of technological challenges encompasses all the issues of pointing, acquisition, and tracking (PAT). iii The two main technologies for DWNs are Free-Space Optical (FSO) and millimeter wave RF (mmW). FSO offers tremendous bandwidths, long ranges, and uses existing fiber-based technologies. However, it suffers from severe turbulence effects when passing through long (>kms) atmospheric paths, and can be severely affected by obscuration. MmW systems do not suffer from atmospheric effects nearly as much, use much more sensitive coherent receivers, and have wider beam divergences allowing for easier pointing. They do, however, suffer from a lack of available small-sized power amplifiers, complicated RF infrastructure that must be steered with a platform, and the requirement that all acquisition and tracking be done with the data beam, as opposed to FSO which uses a beacon laser for acquisition and a fast steering mirror for tracking. This thesis analyzes the many considerations required for designing and implementing a FSO PAT system, and extends this work to the rapidly expanding area of mmW DWN systems. Different types of beam acquisition methods are simulated and tested, and the tradeoffs between various design specifications are analyzed and simulated to give insight into how to best implement a transceiver platform. An experimental test-bed of six FSO platforms is also designed and constructed to test some of these concepts, along with the implementation of a three-node biconnected network. Finally, experiments have been conducted to assess the performance of fixed infrastructure routing hardware when operating with a physically reconfigurable RF network

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore