29 research outputs found

    Performance Enhancement of Ultra Wideband WPAN using Narrowband Interference Mitigation Techniques

    Get PDF
    A new promising technique adopted by 4G community is ultra-wideband technology, which offers a solution for high bandwidth, high data rate, low cost, low power consumption, position location capability etc. A conventional type of UWB communication is impulse radio, where very short transient pulses are transmitted rather than a modulated carrier. Consequently, the spectrum is spread over several GHz, complying with the definition of UWB. Currently, the Rake receiver used for spread spectrum is considered a very promising candidate for UWB reception, due to its capability of collecting multipath components. Since UWB signals occupy such a large bandwidth, they operate as an overlay system with other existing narrowband (NB) radio systems overlapping with their bands. In order to ensure a robust communication link, the issue of coexistence and interference of UWB systems with current indoor wireless systems must be considered. Ultra Wideband technology with its application, advantages and disadvantages are discussed in detail. Design of UWB short pulse and a detail study IEEE 802.15.3a UWB channel models statistical characteristics have been analyzed through simulation. Simulation studies are performed and improved techniques are suggested for interference reduction in both Impulse Radio based UWB and Transmitted Reference type of UWB system. Modified TR-UWB receiver with UWB pulse design at transmitter end and notch filtering at receiver’s front end proved to be more efficient in single NBI, multiple NBI and WBI suppression. Extensive simulation studies to support the efficacy of the proposed schemes are carried out in the MATLAB. Bit error rate (BER) performance study for different data rates over different UWB channel models are also analyzed using proposed receiver models. Performance improvement of TR-UWB system is noticed using the proposed techniques

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Advanced signal processing concepts for multi-dimensional communication systems

    Get PDF
    Die weit verbreitete Nutzung von mobilem Internet und intelligenten Anwendungen hat zu einem explosionsartigen Anstieg des mobilen Datenverkehrs geführt. Mit dem Aufstieg von intelligenten Häusern, intelligenten Gebäuden und intelligenten Städten wächst diese Nachfrage ständig, da zukünftige Kommunikationssysteme die Integration mehrerer Netzwerke erfordern, die verschiedene Sektoren, Domänen und Anwendungen bedienen, wie Multimedia, virtuelle oder erweiterte Realität, Machine-to-Machine (M2M) -Kommunikation / Internet of Things (IoT), Automobilanwendungen und vieles mehr. Daher werden die Kommunikationssysteme zukünftig nicht nur eine drahtlose Verbindung über Gbps bereitstellen müssen, sondern auch andere Anforderungen erfüllen müssen, wie z. B. eine niedrige Latenzzeit und eine massive Maschinentyp-Konnektivität, während die Dienstqualität sichergestellt wird. Ohne bedeutende technologische Fortschritte zur Erhöhung der Systemkapazität wird die bestehende Telekommunikationsinfrastruktur diese mehrdimensionalen Anforderungen nicht unterstützen können. Dies stellt eine wichtige Forderung nach geeigneten Wellenformen und Signalverarbeitungslösungen mit verbesserten spektralen Eigenschaften und erhöhter Flexibilität dar. Aus der Spektrumsperspektive werden zukünftige drahtlose Netzwerke erforderlich sein, um mehrere Funkbänder auszunutzen, wie zum Beispiel niedrigere Frequenzbänder (typischerweise mit Frequenzen unter 10 GHz), mm-Wellenbänder (einige hundert GHz höchstens) und THz-Bänder. Viele alternative Technologien wie Optical Wireless Communication (OWC), dynamische Funksysteme und zellulares Radar sollten ebenfalls untersucht werden, um ihr wahres Potenzial abzuschätzen. Insbesondere bietet OWC ein großes, aber noch nicht genutztes optisches Band im sichtbaren Spektrum, das Licht als Mittel zur Informationsübertragung nutzt. Daher können zukünftige Kommunikationssysteme als zusammengesetzte Hybridnetzwerke angesehen werden, die aus einer Anzahl von verschiedenen drahtlosen Netzwerken bestehen, die auf Funk und optischem Zugang basieren. Auf der anderen Seite ist es eine große Herausforderung, fortschrittliche Signalverarbeitungslösungen für mehrere Bereiche von Kommunikationssystemen zu entwickeln. Diese Arbeit trägt zu diesem Ziel bei, indem sie Methoden für die Suche nach effizienten algebraischen Lösungen für verschiedene Anwendungen der digitalen Mehrkanal-Signalverarbeitung demonstriert. Insbesondere tragen wir zu drei verschiedenen Anwendungsgebieten bei, d.h. Wellenformen, optischen drahtlosen Systemen und mehrdimensionaler Signalverarbeitung. Gegenwärtig ist das Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) die weit verbreitete Multitragetechnik für die meisten Kommunikationssysteme. Um jedoch die CP-OFDM-Nachteile in Bezug auf eine schlechte spektrale Eingrenzung, Robustheit in hoch asynchronen Umgebungen und Unflexibilität der Parameterwahl zu überwinden, wurden viele alternative Wellenformen vorgeschlagen. Solche Mehrfachträgerwellenformen umfassen einen Filter bank Multicarrier (FBMC), ein Generalized Frequency Division Multiplexing (GFDM), einen Universal Filter Multicarrier (UFMC) und ein Unique Word Orthogonal Orthogonal Frequency Division Multiplexing (UW-OFDM). Diese neuen Luftschnittstellenschemata verwenden verschiedene Ansätze, um einige der inhärenten Mängel bei CP-OFDM zu überwinden. Einige dieser Wellenformen wurden gut untersucht, während andere sich noch in den Kinderschuhen befinden. Insbesondere die Integration von Multiple-Input-Multiple-Output (MIMO) -Konzepten mit UW-OFDM und UFMC befindet sich noch in einem frühen Forschungsstadium. Daher schlagen wir im ersten Teil dieser Arbeit neuartige lineare und sukzessive Interferenzunterdrückungstechniken für MIMO UW-OFDM-Systeme vor. Das Design dieser Techniken zielt darauf ab, Empfänger mit einer geringen Rechenkomplexität zu erhalten. Ein weiterer Schwerpunkt ist die Anwendbarkeit von Space-Time Block Codes (STBCs) auf UW-OFDM und UFMC-Wellenformen. Zu diesem Zweck stellen wir neue Techniken zusammen mit Detektionsverfahren vor. Wir vergleichen auch die Leistung dieser Wellenformen mit unseren vorgeschlagenen Techniken mit den anderen Wellenformen des Standes der Technik, die in der Literatur vorgeschlagen wurden. Wir zeigen, dass raumzeitblockierte UW-OFDM-Systeme mit den vorgeschlagenen Methoden nicht nur andere Wellenformen signifikant übertreffen, sondern auch zu Empfängern mit geringer Rechnerkomplexität führen. Der zweite Anwendungsbereich umfasst optische Systeme im sichtbaren Band (390-700 nm), die in Plastic Optical Fibers (POFs), Multimode-Fasern oder OWC-Systemen wie der Kommunikation über Visible Light Communication (VLC) verwendet werden können. VLC kann Lösungen für eine Reihe von Anwendungen anbieten, einschließlich drahtloser lokaler, persönlicher und Körperbereichsnetzwerke (WLAN, WPAN und WBANs), Innenlokalisierung und -navigation, Fahrzeugnetze, U-Bahn- und Unterwassernetze und bietet eine Reihe von Datenraten von wenigen Mbps zu 10 Gbps. VLC nutzt voll sichtbare Light Emitting Diodes (LEDs) für den doppelten Zweck der Beleuchtung und Datenkommunikation bei sehr hohen Geschwindigkeiten. Daher verwenden solche Systeme Intensitätsmodulation und Direct Detection (IM / DD), wodurch gefordert wird, dass das Sendesignal reellwertig und positiv sein sollte. Dies impliziert auch, dass die herkömmlichen Wellenformen, die für die Radio Frequency (RF) Kommunikation ausgelegt sind, nicht direkt verwendet werden können. Zum Beispiel muss eine hermetische Symmetrie auf das CP-OFDM angewendet werden, um ein reellwertiges Signal zu erhalten (oft als Discrete Multitone Transmission (DMT) bezeichnet), das im Gegenzug die Bandbreiteneffizienz verringert. Darüber hinaus begrenzt die LED / LED-Treiberkombination die elektrische Bandbreite. Alle diese Faktoren erfordern die Verwendung spektral effizienter Übertragungsverfahren zusammen mit robusten Entzerrungsschemata, um hohe Datenraten zu erzielen. Deshalb schlagen wir im zweiten Teil der Arbeit Übertragungsverfahren vor, die für solche optischen Systeme am besten geeignet sind. Insbesondere demonstrieren wir die Leistung der PAM-Blockübertragung mit Frequenzbereichsausgleich. Wir zeigen, dass dieses Schema nicht nur leistungsstärker ist, sondern auch alle modernen Verfahren wie CP-DMT-Schemata übertrifft. Wir schlagen auch neue UW-DMT-Schemata vor, die vom UW-OFDM-Konzept abgeleitet sind. Diese Schemata zeigen auch ein sehr überlegenes Bitfehlerverhältnis (BER) -Performance gegenüber den herkömmlichen CP-DMT-Schemata. Der dritte Anwendungsbereich konzentriert sich auf mehrdimensionale Signalverarbeitungstechniken. Bei der Verwendung von MIMO, STBCs, Mehrbenutzerverarbeitung und Mehrträgerwellenformen bei der drahtlosen Kommunikation ist das empfangene Signal mehrdimensional und kann eine multilineare Struktur aufweisen. In diesem Zusammenhang können Signalverarbeitungstechniken, die auf einem Tensor-Modell basieren, gleichzeitig von mehreren Formen von Diversität profitieren, um Mehrbenutzer-Signaltrennung / -entzerrung und Kanalschätzung durchzuführen. Dieser Vorteil ist eine direkte Konsequenz der Eigenschaft der wesentlichen Eindeutigkeit, die für matrixbasierte Ansätze nicht verfügbar ist. Tensor-Zerlegung wie die Higher Order Singular Value Decomposition (HOSVD) und die Canonical Polyadic Decomposition (CPD) werden weithin zur Durchführung dieser Aufgaben empfohlen. Die Leistung dieser Techniken wird oft mit zeitraubenden Monte-Carlo-Versuchen bewertet. Im letzten Teil der Arbeit führen wir eine Störungsanalyse erster Ordnung dieser Tensor-Zerlegungsmethoden durch. Insbesondere führen wir eine analytische Performanceanalyse des Semi-algebraischen Frameworks für approximative Canonical polyadic decompositions Simultaneous matrix diagonalizations (SECSI) durch. Das SECSI-Framework ist ein effizientes Werkzeug zur Berechnung der CPD eines rauscharmen Tensor mit niedrigem Rang. Darüber hinaus werden die erhaltenen analytischen Ausdrücke in Bezug auf die Momente zweiter Ordnung des Rauschens formuliert, so dass abgesehen von einem Mittelwert von Null keine Annahmen über die Rauschstatistik erforderlich sind. Wir zeigen, dass die abgeleiteten analytischen Ergebnisse eine ausgezeichnete Übereinstimmung mit den Monte-Carlo-Simulationen zeigen.The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfil other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with improved spectral characteristics and signal processing solutions with an increased flexibility. Moreover, future wireless networks will be required to exploit several frequency bands, such as lower frequency bands (typically with frequencies below 10 GHz), mm-wave bands (few hundred GHz at the most), and THz bands. Many alternative technologies such as optical wireless communication (OWC), dynamic radio systems, and cellular radar should also be investigated to assess their true potential. Especially, OWC offers large but yet unexploited optical band in the visible spectrum that uses light as a means to carry information. Therefore, future communication systems can be seen as composite hybrid networks that consist of a number of different wireless networks based on radio and optical access. On the other hand, it poses a significant challenge to come up with advanced signal processing solutions in multiple areas of communication systems. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. In particular, we contribute to three different scientific fields, i.e., waveforms, optical wireless systems, and multi-dimensional signal processing. Currently, cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) is the widely adopted multicarrier technique for most of the communication systems. However, to overcome the CP-OFDM demerits in terms of poor spectral containment, poor robustness in highly asynchronous environments, and inflexibility of parameter choice, and many alternative waveforms have been proposed. Such multicarrier waveforms include filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM), universal filter multicarrier (UFMC), and unique word orthogonal frequency division multiplexing (UW-OFDM). These new air interface schemes take different approaches to overcome some of the inherent deficiencies in CP-OFDM. Some of these waveforms have been well investigated while others are still in its infancy. Specifically, the integration of multiple-input multiple-output (MIMO) concepts with UW-OFDM and UFMC is still at an early stage of research. Therefore, in the first part of this thesis, we propose novel linear and successive interference cancellation techniques for MIMO UW-OFDM systems. The design of these techniques is aimed to result in receivers with a low computational complexity. Another focus area is the applicability of space-time block codes (STBCs) to UW-OFDM and UFMC waveforms. For this purpose, we present novel techniques along with detection procedures. We also compare the performance of these waveforms with our proposed techniques to the other state-of-the-art waveforms that has been proposed in the literature. We demonstrate that space-time block coded UW-OFDM systems with the proposed methods not only outperform other waveforms significantly but also results in receivers with a low computational complexity. The second application area comprises of optical systems in the visible band (390-700 nm) that can be utilized in plastic optical fibers (POFs), multimode fibers or OWC systems such as visible light communication (VLC). VLC can provide solutions for a number of applications including wireless local, personal, and body area networks (WLAN, WPAN, and WBANs), indoor localization and navigation, vehicular networks, underground and underwater networks, offering a range of data rates from a few Mbps to 10 Gbps. VLC takes full advantage of visible light emitting diodes (LEDs) for the dual purpose of illumination and data communications at very high speeds. Because of the incoherent nature of the LED sources, such systems employ intensity modulation and direct detection (IM/DD), thus demanding that the transmit signal should be real-valued and positive. This also implies that the conventional waveforms designed for the radio frequency (RF) communication cannot be directly used. For example, a Hermitian symmetry has to be applied to the CP-OFDM spectrum to obtain a real-valued signal (often referred to as discrete multitone transmission (DMT)) that in return reduces the bandwidth efficiency. Moreover, the LED/LED driver combination limits the electrical bandwidth. All these factors require the use of spectrally efficient transmission schemes along with robust equalization schemes to achieve high data rates. Therefore, in the second part of the thesis, we propose transmission schemes that are best suited for such optical systems. Specifically, we demonstrate the performance of PAM block transmission with frequency domain equalization. We show that this scheme is not only more power efficient but also outperforms all of the state-of-the-art schemes such as CP-DMT schemes. We also propose novel UW-DMT schemes that are derived from the UW-OFDM concept. These schemes also show a much superior bit error ratio (BER) performance over the conventional CP-DMT schemes. The third application area focuses on multi-dimensional signal processing techniques. With the use of MIMO, STBCs, multi-user processing, and multicarrier waveforms in wireless communications, the received signal is multidimensional in nature and may exhibit a multilinear structure. In this context, signal processing techniques based on a tensor model can simultaneously benefit from multiple forms of diversity to perform multi-user signal separation/equalization and channel estimation. This advantage is a direct consequence of the essential uniqueness property that is not available for matrix based approaches. Tensor decompositions such as the higher order singular value decomposition (HOSVD) and the canonical polyadic decomposition (CPD) are widely recommended for performing these tasks. The performance of these techniques is often evaluated using time consuming Monte-Carlo trials. In the last part of the thesis, we perform a first-order perturbation analysis of the truncated HOSVD and the Semi-algebraic framework for approximate Canonical polyadic decompositions via Simultaneous matrix diagonalizations (SECSI). The SECSI framework is an efficient tool for the computation of the approximate CPD of a low-rank noise corrupted tensor. Especially, the SECSI framework shows a much improved performance and comparatively low-complexity as compared to the conventional algorithms such as alternative least squares (ALS). Moreover, it also facilitates the implementation on a parallel hardware architecture. The obtained analytical expressions for both algorithms are formulated in terms of the second-order moments of the noise, such that apart from a zero-mean, no assumptions on the noise statistics are required. We demonstrate that the derived analytical results exhibit an excellent match to the Monte-Carlo simulations

    Massive MIMO transmission techniques

    Get PDF
    Next generation of mobile communication systems must support astounding data traffic increases, higher data rates and lower latency, among other requirements. These requirements should be met while assuring energy efficiency for mobile devices and base stations. Several technologies are being proposed for 5G, but a consensus begins to emerge. Most likely, the future core 5G technologies will include massive MIMO (Multiple Input Multiple Output) and beamforming schemes operating in the millimeter wave spectrum. As soon as the millimeter wave propagation difficulties are overcome, the full potential of massive MIMO structures can be tapped. The present work proposes a new transmission system with bi-dimensional antenna arrays working at millimeter wave frequencies, where the multiple antenna configurations can be used to obtain very high gain and directive transmission in point to point communications. A combination of beamforming with a constellation shaping scheme is proposed, that enables good user isolation and protection against eavesdropping, while simultaneously assuring power efficient amplification of multi-level constellations

    Dynamic length equaliser and its application to the DS-CDMA systems

    Get PDF

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI
    corecore