16,526 research outputs found

    Semantically Secure Anonymity: Foundations of Re-encryption

    Get PDF
    The notion of universal re-encryption is an established primitive used in the design of many anonymity protocols. It allows anyone to randomize a ciphertext without changing its size, without first decrypting it, and without knowing who the receiver is (i.e., not knowing the public key used to create it). By design it prevents the randomized ciphertext from being correlated with the original ciphertext. We revisit and analyze the security foundation of universal re-encryption and show a subtlety in it, namely, that it does not require that the encryption function achieve key anonymity. Recall that the encryption function is different from the re-encryption function. We demonstrate this subtlety by constructing a cryptosystem that satisfies the established definition of a universal cryptosystem but that has an encryption function that does not achieve key anonymity, thereby instantiating the gap in the definition of security of universal re-encryption. We note that the gap in the definition carries over to a set of applications that rely on universal re-encryption, applications in the original paper on universal re-encryption and also follow-on work. This shows that the original definition needs to be corrected and it shows that it had a knock-on effect that negatively impacted security in later work. We then introduce a new definition that includes the properties that are needed for a re-encryption cryptosystem to achieve key anonymity in both the encryption function and the re-encryption function, building on Goldwasser and Micali\u27s semantic security and the original key anonymity notion of Bellare, Boldyreva, Desai, and Pointcheval. Omitting any of the properties in our definition leads to a problem. We also introduce a new generalization of the Decision Diffie-Hellman (DDH) random self-reduction and use it, in turn, to prove that the original ElGamal-based universal cryptosystem of Golle et al is secure under our revised security definition. We apply our new DDH reduction technique to give the first proof in the standard model that ElGamal-based incomparable public keys achieve key anonymity under DDH. We present a novel secure Forward-Anonymous Batch Mix as a new application

    Eavesdropping on GSM: state-of-affairs

    Get PDF
    In the almost 20 years since GSM was deployed several security problems have been found, both in the protocols and in the - originally secret - cryptography. However, practical exploits of these weaknesses are complicated because of all the signal processing involved and have not been seen much outside of their use by law enforcement agencies. This could change due to recently developed open-source equipment and software that can capture and digitize signals from the GSM frequencies. This might make practical attacks against GSM much simpler to perform. Indeed, several claims have recently appeared in the media on successfully eavesdropping on GSM. When looking at these claims in depth the conclusion is often that more is claimed than what they are actually capable of. However, it is undeniable that these claims herald the possibilities to eavesdrop on GSM using publicly available equipment. This paper evaluates the claims and practical possibilities when it comes to eavesdropping on GSM, using relatively cheap hardware and open source initiatives which have generated many headlines over the past year. The basis of the paper is extensive experiments with the USRP (Universal Software Radio Peripheral) and software projects for this hardware.Comment: 5th Benelux Workshop on Information and System Security (WISSec 2010), November 201
    • …
    corecore