173,346 research outputs found

    Runtime Analysis of the (1+(λ,λ))(1+(\lambda,\lambda)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas

    Full text link
    The (1+(λ,λ))(1+(\lambda,\lambda)) genetic algorithm, first proposed at GECCO 2013, showed a surprisingly good performance on so me optimization problems. The theoretical analysis so far was restricted to the OneMax test function, where this GA profited from the perfect fitness-distance correlation. In this work, we conduct a rigorous runtime analysis of this GA on random 3-SAT instances in the planted solution model having at least logarithmic average degree, which are known to have a weaker fitness distance correlation. We prove that this GA with fixed not too large population size again obtains runtimes better than Θ(nlogn)\Theta(n \log n), which is a lower bound for most evolutionary algorithms on pseudo-Boolean problems with unique optimum. However, the self-adjusting version of the GA risks reaching population sizes at which the intermediate selection of the GA, due to the weaker fitness-distance correlation, is not able to distinguish a profitable offspring from others. We show that this problem can be overcome by equipping the self-adjusting GA with an upper limit for the population size. Apart from sparse instances, this limit can be chosen in a way that the asymptotic performance does not worsen compared to the idealistic OneMax case. Overall, this work shows that the (1+(λ,λ))(1+(\lambda,\lambda)) GA can provably have a good performance on combinatorial search and optimization problems also in the presence of a weaker fitness-distance correlation.Comment: An extended abstract of this report will appear in the proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017

    Optimal Motion Control for Connected and Automated Electric Vehicles at Signal-Free Intersections

    Get PDF
    Traffic congestion is one of the major issues for urban traffic networks. The connected and autonomous vehicles (CAV) is an emerging technology that has the potential to address this issue by improving safety, efficiency, and capacity of the transportation system. In this paper, the problem of optimal trajectory planning of battery-electric CAVs in the context of cooperative crossing of an unsignalized intersection is addressed. An optimization-based centralized intersection controller is proposed to find the optimal velocity trajectory of each vehicle so as to minimize electric energy consumption and traffic throughput. Solving the underlying optimization problem for a group of CAVs is not straightforward because of the nonlinear and nonconvex dynamics, especially when the powertrain model is explicitly modelled. In order to ensure a rapid solution search and a unique global optimum, the optimal control problem (OCP) is reformulated via convex modeling techniques. Several simulation case studies show the effectiveness of the proposed approach and the trade-off between energy consumption and traffic throughput is illustrated

    Creating an Intentional Web Presence: Strategies for Every Educational Technology Professional

    Get PDF
    Recently, educators are pushing for students, specifically graduates, to be digitally literate in order to successfully read, write, contribute, and ultimately compete in the global market place. Educational technology professionals, as a unique type of learning professional, need to be not only digitally literate to lead and assist teachers and students toward this goal, but also model the digital fluency expected of an educational technology leader. Part of this digital fluency involves effectively managing one’s web presence. In this article, we argue that educational technology professionals need to practice what they preach by attending to their own web presence. We share strategies for crafting the components of a vibrant and dynamic professional web presence, such as creating a personal website, engaging in social networking, contributing and sharing resources/artifacts, and attending to search engine optimization (SEO)
    corecore