134,190 research outputs found

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Advanced modulation technology development for earth station demodulator applications. Coded modulation system development

    Get PDF
    A jointly optimized coded modulation system is described which was designed, built, and tested by COMSAT Laboratories for NASA LeRC which provides a bandwidth efficiency of 2 bits/s/Hz at an information rate of 160 Mbit/s. A high speed rate 8/9 encoder with a Viterbi decoder and an Octal PSK modem are used to achieve this. The BER performance is approximately 1 dB from the theoretically calculated value for this system at a BER of 5 E-7 under nominal conditions. The system operates in burst mode for downlink applications and tests have demonstrated very little degradation in performance with frequency and level offset. Unique word miss rate measurements were conducted which demonstrate reliable acquisition at low values of Eb/No. Codec self tests have verified the performance of this subsystem in a stand alone mode. The codec is capable of operation at a 200 Mbit/s information rate as demonstrated using a codec test set which introduces noise digitally. The measured performance is within 0.2 dB of the computer simulated predictions. A gate array implementation of the most time critical element of the high speed Viterbi decoder was completed. This gate array add-compare-select chip significantly reduces the power consumption and improves the manufacturability of the decoder. This chip has general application in the implementation of high speed Viterbi decoders

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    Discrete input equipment design study

    Get PDF
    The study to improve the reliability of the LUT system by discrete input equipment (DIE) is reported. Subjects discussed include: specifications, packaging, aircraft integrated systems, and word formats DIE. It is recommended that maximal use of advanced technology be made, particularly the "know how' developed on the Saturn project

    Westinghouse programs in pulsed homopolar power supplies

    Get PDF
    This document details Westinghouse's ongoing study of homopolar machines since 1929 with the major effort occurring in the early 1970's to the present. The effort has enabled Westinghouse to develop expertise in the technology required for the design, fabrication and testing of such machines. This includes electrical design, electromagnetic analysis, current collection, mechanical design, advanced cooling, stress analysis, transient rotor performance, bearing analysis and seal technology. Westinghouse is using this capability to explore the use of homopolar machines as pulsed power supplies for future systems in both military and commercial applications

    LOT: Logic Optimization with Testability - new transformations for logic synthesis

    Get PDF
    A new approach to optimize multilevel logic circuits is introduced. Given a multilevel circuit, the synthesis method optimizes its area while simultaneously enhancing its random pattern testability. The method is based on structural transformations at the gate level. New transformations involving EX-OR gates as well as Reed–Muller expansions have been introduced in the synthesis of multilevel circuits. This method is augmented with transformations that specifically enhance random-pattern testability while reducing the area. Testability enhancement is an integral part of our synthesis methodology. Experimental results show that the proposed methodology not only can achieve lower area than other similar tools, but that it achieves better testability compared to available testability enhancement tools such as tstfx. Specifically for ISCAS-85 benchmark circuits, it was observed that EX-OR gate-based transformations successfully contributed toward generating smaller circuits compared to other state-of-the-art logic optimization tools
    corecore