242 research outputs found

    On the Impact of Singleton Strategies in Congestion Games

    Get PDF
    To what extent does the structure of the players\u27 strategy space influence the efficiency of decentralized solutions in congestion games? In this work, we investigate whether better performance is possible when restricting to load balancing games in which players can only choose among single resources. We consider three different solutions concepts, namely, approximate pure Nash equilibria, approximate one-round walks generated by selfish players aiming at minimizing their personal cost and approximate one-round walks generated by cooperative players aiming at minimizing the marginal increase in the sum of the players\u27 personal costs. The last two concepts can also be interpreted as solutions of simple greedy online algorithms for the related resource selection problem. Under fairly general latency functions on the resources, we show that, for all three types of solutions, better bounds cannot be achieved if players are either weighted or asymmetric. On the positive side, we prove that, under mild assumptions on the latency functions, improvements on the performance of approximate pure Nash equilibria are possible for load balancing games with weighted and symmetric players in the case of identical resources. We also design lower bounds on the performance of one-round walks in load balancing games with unweighted players and identical resources (in this case, solutions generated by selfish and cooperative players coincide)

    Exact Price of Anarchy for Weighted Congestion Games with Two Players

    Get PDF
    This paper gives a complete analysis of worst-case equilibria for various versions of weighted congestion games with two players and affine cost functions. The results are exact price of anarchy bounds which are parametric in the weights of the two players, and establish exactly how the primitives of the game enter into the quality of equilibria. Interestingly, some of the worst-cases are attained when the players' weights only differ slightly. Our findings also show that sequential play improves the price of anarchy in all cases, however, this effect vanishes with an increasing difference in the players' weights. Methodologically, we obtain exact price of anarchy bounds by a duality based proof mechanism, based on a compact linear programming formulation that computes worst-case instances. This mechanism yields duality-based optimality certificates which can eventually be turned into purely algebraic proofs.Comment: 17 pages, 9 figures, 4 table

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    Uniform Mixed Equilibria in Network Congestion Games with Link Failures

    Get PDF
    Motivated by possible applications in fault-tolerant routing, we introduce the notion of uniform mixed equilibria in network congestion games with adversarial link failures, where players need to route traffic from a source to a destination node. Given an integer rho >= 1, a rho-uniform mixed strategy is a mixed strategy in which a player plays exactly rho edge disjoint paths with uniform probabilities, so that a rho-uniform mixed equilibrium is a tuple of rho-uniform mixed strategies, one for each player, in which no player can lower her cost by deviating to another rho-uniform mixed strategy. For games with weighted players and affine latency functions, we show existence of rho-uniform mixed equilibria and provide a tight characterization of their price of anarchy. For games with unweighted players, instead, we extend the existential guarantee to any class of latency functions and, restricted to games with affine latencies, we derive a tight characterization of both the prices of anarchy and stability

    Non-Atomic One-Round Walks in Polynomial Congestion Games

    Get PDF
    Abstract. In this paper we study the approximation ratio of the solutions achieved after an -approximate one-round walk in non-atomic congestion games. Prior to this work, the solution concept of one-round walks had been studied for atomic congestion games with linear latency functions onl

    Congestion Games with Multisets of Resources and Applications in Synthesis

    Get PDF
    In classical congestion games, players\u27 strategies are subsets of resources. We introduce and study multiset congestion games, where players\u27 strategies are multisets of resources. Thus, in each strategy a player may need to use each resource a different number of times, and his cost for using the resource depends on the load that he and the other players generate on the resource. Beyond the theoretical interest in examining the effect of a repeated use of resources, our study enables better understanding of non-cooperative systems and environments whose behavior is not covered by previously studied models. Indeed, congestion games with multiset-strategies arise, for example, in production planing and network formation with tasks that are more involved than reachability. We study in detail the application of synthesis from component libraries: different users synthesize systems by gluing together components from a component library. A component may be used in several systems and may be used several times in a system. The performance of a component and hence the system\u27s quality depends on the load on it. Our results reveal how the richer setting of multisets congestion games affects the stability and equilibrium efficiency compared to standard congestion games. In particular, while we present very simple instances with no pure Nash equilibrium and prove tighter and simpler lower bounds for equilibrium inefficiency, we are also able to show that some of the positive results known for affine and weighted congestion games apply to the richer setting of multisets

    Project Games

    Get PDF
    International audienceWe consider a strategic game called project game where each agent has to choose a project among his own list of available projects. The model includes positive weights expressing the capacity of a given agent to contribute to a given project The realization of a project produces some reward that has to be allocated to the agents. The reward of a realized project is fully allocated to its contributors, according to a simple proportional rule. Existence and computational complexity of pure Nash equilibria is addressed and their efficiency is investigated according to both the utilitarian and the egalitarian social function

    Improving Approximate Pure Nash Equilibria in Congestion Games

    Get PDF
    Congestion games constitute an important class of games to model resource allocation by different users. As computing an exact or even an approximate pure Nash equilibrium is in general PLS-complete, Caragiannis et al. (2011) present a polynomial-time algorithm that computes a (2+ϵ2 + \epsilon)-approximate pure Nash equilibria for games with linear cost functions and further results for polynomial cost functions. We show that this factor can be improved to (1.61+ϵ)(1.61+\epsilon) and further improved results for polynomial cost functions, by a seemingly simple modification to their algorithm by allowing for the cost functions used during the best response dynamics be different from the overall objective function. Interestingly, our modification to the algorithm also extends to efficiently computing improved approximate pure Nash equilibria in games with arbitrary non-decreasing resource cost functions. Additionally, our analysis exhibits an interesting method to optimally compute universal load dependent taxes and using linear programming duality prove tight bounds on PoA under universal taxation, e.g, 2.012 for linear congestion games and further results for polynomial cost functions. Although our approach yield weaker results than that in Bil\`{o} and Vinci (2016), we remark that our cost functions are locally computable and in contrast to Bil\`{o} and Vinci (2016) are independent of the actual instance of the game
    • …
    corecore