4,648 research outputs found

    A Unifying Response Time Analysis Framework for Dynamic Self-Suspending Tasks

    Get PDF
    28th Euromicro Conference on Real-Time Systems (ECRTS 16). 5 to 8, Jul, 2016. Toulouse, France.For real-time embedded systems, self-suspending behaviors can cause substantial performance/schedulability degradations. In this paper, we focus on preemptive fixed-priority scheduling for the dynamic self-suspension task model on uniprocessor. This model assumes that a job of a task can dynamically suspend itself during its execution (for instance, to wait for shared resources or access co-processors or external devices). The total suspension time of a job is upper-bounded, but this dynamic behavior drastically influences the interference generated by this task on lower-priority tasks. The state-of-the-art results for this task model can be classified into three categories (i) modeling suspension as computation, (ii) modeling suspension as release jitter, and (iii) modeling suspension as a blocking term. However, several results associated to the release jitter approach have been recently proven to be erroneous, and the concept of modeling suspension as blocking was never formally proven correct. This paper presents a unifying response time analysis framework for the dynamic self-suspending task model. We provide a rigorous proof and show that the existing analyses pertaining to the three categories mentioned above are analytically dominated by our proposed solution. Therefore, all those techniques are in fact correct, but they are inferior to the proposed response time analysis in this paper. The evaluation results show that our analysis framework can generate huge improvements (an increase of up to 50% of the number of task sets deemed schedulable) over these state-of-the-art analyses.info:eu-repo/semantics/publishedVersio

    EDF-Like Scheduling for Self-Suspending Real-Time Tasks

    Get PDF
    In real-time systems, schedulability tests are utilized to provide timing guarantees. However, for self-suspending task sets, current suspension-aware schedulability tests are limited to Task-Level Fixed-Priority~(TFP) scheduling or Earliest-Deadline-First~(EDF) with constrained-deadline task systems. In this work we provide a unifying schedulability test for the uniprocessor version of Global EDF-Like (GEL) schedulers and arbitrary-deadline task sets. A large body of existing scheduling algorithms can be considered as EDF-Like, such as EDF, First-In-First-Out~(FIFO), Earliest-Quasi-Deadline-First~(EQDF) and Suspension-Aware EDF~(SAEDF). Therefore, the unifying schedulability test is applicable to those algorithms. Moreover, the schedulability test can be applied to TFP scheduling as well. Our analysis is the first suspension-aware schedulability test applicable to arbitrary-deadline sporadic real-time task systems under Job-Level Fixed-Priority (JFP) scheduling, such as EDF. Moreover, it is the first unifying suspension-aware schedulability test framework that covers a wide range of scheduling algorithms. Through numerical simulations, we show that the schedulability test outperforms the state of the art for EDF under constrained-deadline scenarios. Moreover, we demonstrate the performance of different configurations under EQDF and SAEDF

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Hard Real-Time Stationary GANG-Scheduling

    Get PDF
    The scheduling of parallel real-time tasks enables the efficient utilization of modern multiprocessor platforms for systems with real-time constrains. In this situation, the gang task model, in which each parallel sub-job has to be executed simultaneously, has shown significant performance benefits due to reduced context switches and more efficient intra-task synchronization. In this paper, we provide the first schedulability analysis for sporadic constrained-deadline gang task systems and propose a novel stationary gang scheduling algorithm. We show that the schedulability problem of gang task sets can be reduced to the uniprocessor self-suspension schedulability problem. Furthermore, we provide a class of partitioning algorithms to find a stationary gang assignment and show that it bounds the worst-case interference of each task. To demonstrate the effectiveness of our proposed approach, we evaluate it for implicit-deadline systems using randomized task sets under different settings, showing that our approach outperforms the state-of-the-art

    The SRP Resource Sharing Protocol for Self-Suspending Tasks

    Get PDF
    Motivated by the increasingly wide adoption of realtime workload with self-suspending behaviors, and the relevance of mechanisms to handle mutually-exclusive shared resources, this paper takes a new look at locking protocols for self-suspending tasks under uniprocessor fixed-priority scheduling. Pitfalls when integrating the widely-adopted Stack Resource Policy (SRP) with self-suspending tasks are firstly illustrated, and then a new finegrained SRP analysis is presented. Next, a new locking protocol, named SRP-SS, is proposed to overcome the limitations of the original SRP. The SRP-SS is a generalization of the SRP to cope with the specificities of self-suspending tasks. It therefore reduces to the SRP under some configurations and hence theoretically dominates the SRP. It also ensures backward compatibility for applications developed specifically for the SRP. The SRP-SS comes with its own schedulability analysis and configuration algorithm. The performances of the SRP and SRP-SS are finally studied by means of large-scale schedulability experiments.info:eu-repo/semantics/publishedVersio

    Constant bandwidth servers with constrained deadlines

    Get PDF
    The Hard Constant Bandwidth Server (H-CBS) is a reservation-based scheduling algorithm often used to mix hard and soft real-time tasks on the same system. A number of variants of the H-CBS algorithm have been proposed in the last years, but all of them have been conceived for implicit server deadlines (i.e., equal to the server period). However, recent promising results on semi-partitioned scheduling together with the demand for new functionality claimed by the Linux community, urge the need for a reservation algorithm that is able to work with constrained deadlines. This paper presents three novel H-CBS algorithms that support constrained deadlines. The three algorithms are formally analyzed, and their performance are compared through an extensive set of simulations

    PhD Thesis Proposal: Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Get PDF
    Resource optimization in health care, manufacturing, and military operations requires the careful choreography of people and equipment to effectively fulfill the responsibilities of the profession. However, resource optimization is a computationally challenging problem, and poorly utilizing resources can have drastic consequences. Within these professions, there are human domain experts who are able to learn from experience to develop strategies, heuristics, and rules-of-thumb to effectively utilize the resources at their disposal. Manually codifying these heuristics within a computational tool is a laborious process and leaves much to be desired. Even with a codified set of heuristics, it is not clear how to best insert an autonomous decision-support system into the human decision-making process. The aim of this thesis is to develop an autonomous computational method for learning domain-expert heuristics from demonstration that can support the human decision-making process. We propose a new framework, called apprenticeship scheduling, which learns and embeds these heuristics within a scalable resource optimization algorithm for real-time decision-support. Our initial investigation, comprised of developing scalable methods for scheduling and studying shared control in human-machine collaborative resource optimization, inspires the development of our apprenticeship scheduling approach. We present a promising, initial prototype for learning heuristics from demonstration and outline a plan for our continuing work
    • …
    corecore