114 research outputs found

    A Unifying Framework for the Approximate Solution of Closed Multiclass Queuing Networks

    Get PDF
    Queuing network models of modern computing systems must consider a large number of components (e.g., Web servers, DB servers, application servers, firewall, routers, networks) and hundreds of customers with very different resource requirements. The complexity of such models makes the application of exact solution techniques prohibitively expensive, motivating research on approximate methods. This paper proposes an interpolation-matching framework that allows a unified view of approximate solution techniques for closed product-form queuing networks. Depending upon the interpolating functional form and the matching populations selected, a large versatile family of new approximations can be generated. It is shown that all the known approximation strategies, including Linearizer, are instances of the interpolation-matching framework. Furthermore, a new approximation technique, based on a third-order polynomial, is obtained using the interpolation-matching framework. The new technique is shown to be more accurate than other known methods

    Dynamic priority allocation via restless bandit marginal productivity indices

    Full text link
    This paper surveys recent work by the author on the theoretical and algorithmic aspects of restless bandit indexation as well as on its application to a variety of problems involving the dynamic allocation of priority to multiple stochastic projects. The main aim is to present ideas and methods in an accessible form that can be of use to researchers addressing problems of such a kind. Besides building on the rich literature on bandit problems, our approach draws on ideas from linear programming, economics, and multi-objective optimization. In particular, it was motivated to address issues raised in the seminal work of Whittle (Restless bandits: activity allocation in a changing world. In: Gani J. (ed.) A Celebration of Applied Probability, J. Appl. Probab., vol. 25A, Applied Probability Trust, Sheffield, pp. 287-298, 1988) where he introduced the index for restless bandits that is the starting point of this work. Such an index, along with previously proposed indices and more recent extensions, is shown to be unified through the intuitive concept of ``marginal productivity index'' (MPI), which measures the marginal productivity of work on a project at each of its states. In a multi-project setting, MPI policies are economically sound, as they dynamically allocate higher priority to those projects where work appears to be currently more productive. Besides being tractable and widely applicable, a growing body of computational evidence indicates that such index policies typically achieve a near-optimal performance and substantially outperform benchmark policies derived from conventional approaches.Comment: 7 figure

    QD-AMVA: Evaluating Systems with Queue-Dependent Service Requirements

    Get PDF
    AbstractWorkload measurements in enterprise systems often lead to observe a dependence between the number of requests running at a resource and their mean service requirements. However, multiclass performance models that feature these dependences are challenging to analyze, a fact that discourages practitioners from characterizing workload dependences. We here focus on closed multiclass queueing networks and introduce QD-AMVA, the first approximate mean-value analysis (AMVA) algorithm that can efficiently and robustly analyze queue-dependent service times in a multiclass setting. A key feature of QD-AMVA is that it operates on mean values, avoiding the computation of state probabilities. This property is an innovative result for state-dependent models, which increases the computational efficiency and numerical robustness of their evaluation. Extensive validation on random examples, a cloud load-balancing case study and comparison with a fluid method and an existing AMVA approximation prove that QD-AMVA is efficient, robust and easy to apply, thus enhancing the tractability of queue-dependent models

    Estimating multiclass service demand distributions using Markovian arrival processes

    Get PDF
    Building performance models for software services in DevOps is costly and error-prone. Accurate service demand distribution estimation is critical to precisely modeling queueing behaviors and performance prediction. However, current estimation methods focus on capturing the mean service demand, disregarding higher-order moments of the distribution that still can largely affect prediction accuracy. To address this limitation, we propose to estimate higher moments of the service demand distribution for a microservice from monitoring traces. We first generate a closed queueing model to abstract software performance and use it to model the departure process of requests completed by the software service as a Markovian arrival process. This allows formulating the estimation of service demand into an optimization problem, which aims to find the first multiple moments of the service demand distribution that maximize the likelihood of the MAP using generated the measured inter-departure times. We then estimate the service demand distribution for different classes of service with a maximum likelihood algorithm and novel heuristics to mitigate the computational cost of the optimization process for scalability. We apply our method to real traces from a microservice-based application and demonstrate that its estimations lead to greater prediction accuracy than exponential distributions assumed in traditional service demand estimation approaches for software services

    Performance evaluation of warehouses with automated storage and retrieval technologies.

    Get PDF
    In this dissertation, we study the performance evaluation of two automated warehouse material handling (MH) technologies - automated storage/retrieval system (AS/RS) and autonomous vehicle storage/retrieval system (AVS/RS). AS/RS is a traditional automated warehouse MH technology and has been used for more than five decades. AVS/RS is a relatively new automated warehouse MH technology and an alternative to AS/RS. There are two possible configurations of AVS/RS: AVS/RS with tier-captive vehicles and AVS/RS with tier-to-tier vehicles. We model the AS/RS and both configurations of the AVS/RS as queueing networks. We analyze and develop approximate algorithms for these network models and use them to estimate performance of the two automated warehouse MH technologies. Chapter 2 contains two parts. The first part is a brief review of existing papers about AS/RS and AVS/RS. The second part is a methodological review of queueing network theory, which serves as a building block for our study. In Chapter 3, we model AS/RSs and AVS/RSs with tier-captive vehicles as open queueing networks (OQNs). We show how to analyze OQNs and estimate related performance measures. We then apply an existing OQN analyzer to compare the two MH technologies and answer various design questions. In Chapter 4 and Chapter 5, we present some efficient algorithms to solve SOQN. We show how to model AVS/RSs with tier-to-tier vehicles as SOQNs and evaluate performance of these designs in Chapter 6. AVS/RS is a relatively new automated warehouse design technology. Hence, there are few efficient analytical tools to evaluate performance measures of this technology. We developed some efficient algorithms based on SOQN to quickly and effectively evaluate performance of AVS/RS. Additionally, we present a tool that helps a warehouse designer during the concepting stage to determine the type of MH technology to use, analyze numerous alternate warehouse configurations and select one of these for final implementation

    A Bayesian Approach to Parameter Inference in Queueing Networks

    Get PDF
    The application of queueing network models to real-world applications often involves the task of estimating the service demand placed by requests at queueing nodes. In this article, we propose a methodology to estimate service demands in closed multiclass queueing networks based on Gibbs sampling. Our methodology requires measurements of the number of jobs at resources and can accept prior probabilities on the demands. Gibbs sampling is challenging to apply to estimation problems for queueing networks since it requires one to efficiently evaluate a likelihood function on the measured data. This likelihood function depends on the equilibrium solution of the network, which is difficult to compute in closed models due to the presence of the normalizing constant of the equilibrium state probabilities. To tackle this obstacle, we define a novel iterative approximation of the normalizing constant and show the improved accuracy of this approach, compared to existing methods, for use in conjunction with Gibbs sampling. We also demonstrate that, as a demand estimation tool, Gibbs sampling outperforms other popular Markov Chain Monte Carlo approximations. Experimental validation based on traces from a cloud application demonstrates the effectiveness of Gibbs sampling for service demand estimation in real-world studies

    Dynamic network loading: a differentiable model that derives link state distributions

    Get PDF
    We present a dynamic network loading model that yields queue length distributions, accounts for spillbacks, and maintains a differentiable mapping from the dynamic demand on the dynamic queue lengths. The approach builds upon an existing stationary queueing network model that is based on finite capacity queueing theory. The original model is specified in terms of a set of differentiable equations, which in the new model are carried over to a set of equally smooth difference equations. The physical correctness of the new model is experimentally confirmed in several congestion regimes. A comparison with results predicted by the kinematic wave model (KWM) shows that the new model correctly represents the dynamic build-up, spillback, and dissipation of queues. It goes beyond the KWM in that it captures queue lengths and spillbacks probabilistically, which allows for a richer analysis than the deterministic predictions of the KWM. The new model also generates a plausible fundamental diagram, which demonstrates that it captures well the stationary flow/density relationships in both congested and uncongested conditions
    • …
    corecore