5,349 research outputs found

    Motif Discovery in Biological Sequences

    Get PDF
    With the large amount of biological data generated due to DNA sequencing of various organisms, it is becoming necessary to identify techniques that can help in finding useful information amongst all the data. Finding motifs involves determining meaningful short sequences that may be repeated over many sequences in various species. Various approaches for the motif discovery problem have been proposed in the literature. One method suggests using genetic algorithms. In this project, an evolutionary approach for motif discovery has been explored. The population is clustered during every generation of the algorithm and then evolved locally within the clusters to allow the search space to maintain solution diversity

    Neural Networks beyond explainability: Selective inference for sequence motifs

    Full text link
    Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS)

    Multiple Methods for Genome Filtering

    Get PDF
    Filters are fast algorithms, which help to preprocess DNA sequences in order to reduce the time and complexity of approximate motif search. Multiple filtering methods exist, and this paper classifies the filtering algorithms based on their approach, numerical analysis or digital signal processing, and it briefly reviews both classes of filters. The paper also reflects on filters currently used in popular software for genomic processing

    Fast motif recognition via application of statistical thresholds

    Get PDF
    Background: Improving the accuracy and efficiency of motif recognition is an important computational challenge that has application to detecting transcription factor binding sites in genomic data. Closely related to motif recognition is the Consensus String decision problem that asks, given a parameter d and a set of ℓ-length strings S = {s1,...,sn}, whether there exists a consensus string that has Hamming distance at most d from any string in S. A set of strings S is pairwise bounded if the Hamming distance between any pair of strings in S is at most 2d. It is trivial to determine whether a set is pairwise bounded, and a set cannot have a consensus string unless it is pairwise bounded. We use Consensus String to determine whether or not a pairwise bounded set has a consensus. Unfortunately, Consensus String is NP-complete. The lack of an efficient method to solve the Consensus String problem has caused it to become a computational bottleneck in MCL-WMR, a motif recognition program capable of solving difficult motif recognition problem instances. Results: We focus on the development of a method for solving Consensus String quickly with a small probability of error. We apply this heuristic to develop a new motif recognition program, sMCL-WMR, which has impressive accuracy and efficiency. We demonstrate the performance of sMCL-WMR in detecting weak motifs in large data sets and in real genomic data sets, and compare the performance to other leading motif recognitio

    A combinatorial optimization approach for diverse motif finding applications

    Get PDF
    BACKGROUND: Discovering approximately repeated patterns, or motifs, in biological sequences is an important and widely-studied problem in computational molecular biology. Most frequently, motif finding applications arise when identifying shared regulatory signals within DNA sequences or shared functional and structural elements within protein sequences. Due to the diversity of contexts in which motif finding is applied, several variations of the problem are commonly studied. RESULTS: We introduce a versatile combinatorial optimization framework for motif finding that couples graph pruning techniques with a novel integer linear programming formulation. Our approach is flexible and robust enough to model several variants of the motif finding problem, including those incorporating substitution matrices and phylogenetic distances. Additionally, we give an approach for determining statistical significance of uncovered motifs. In testing on numerous DNA and protein datasets, we demonstrate that our approach typically identifies statistically significant motifs corresponding to either known motifs or other motifs of high conservation. Moreover, in most cases, our approach finds provably optimal solutions to the underlying optimization problem. CONCLUSION: Our results demonstrate that a combined graph theoretic and mathematical programming approach can be the basis for effective and powerful techniques for diverse motif finding applications

    A particle swarm optimization-based algorithm for finding gapped motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying approximately repeated patterns, or motifs, in DNA sequences from a set of co-regulated genes is an important step towards deciphering the complex gene regulatory networks and understanding gene functions.</p> <p>Results</p> <p>In this work, we develop a novel motif finding algorithm (PSO+) using a population-based stochastic optimization technique called Particle Swarm Optimization (PSO), which has been shown to be effective in optimizing difficult multidimensional problems in continuous domains. We propose a modification of the standard PSO algorithm to handle discrete values, such as characters in DNA sequences. The algorithm provides several features. First, we use both consensus and position-specific weight matrix representations in our algorithm, taking advantage of the efficiency of the former and the accuracy of the latter. Furthermore, many real motifs contain gaps, but the existing methods usually ignore them or assume a user know their exact locations and lengths, which is usually impractical for real applications. In comparison, our method models gaps explicitly, and provides an easy solution to find gapped motifs without any detailed knowledge of gaps. Our method allows the presence of input sequences containing zero or multiple binding sites.</p> <p>Conclusion</p> <p>Experimental results on synthetic challenge problems as well as real biological sequences show that our method is both more efficient and more accurate than several existing algorithms, especially when gaps are present in the motifs.</p

    Discriminative motif discovery in DNA and protein sequences using the DEME algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motif discovery aims to detect short, highly conserved patterns in a collection of unaligned DNA or protein sequences. Discriminative motif finding algorithms aim to increase the sensitivity and selectivity of motif discovery by utilizing a second set of sequences, and searching only for patterns that can differentiate the two sets of sequences. Potential applications of discriminative motif discovery include discovering transcription factor binding site motifs in ChIP-chip data and finding protein motifs involved in thermal stability using sets of orthologous proteins from thermophilic and mesophilic organisms.</p> <p>Results</p> <p>We describe DEME, a discriminative motif discovery algorithm for use with protein and DNA sequences. Input to DEME is two sets of sequences; a "positive" set and a "negative" set. DEME represents motifs using a probabilistic model, and uses a novel combination of global and local search to find the motif that optimally discriminates between the two sets of sequences. DEME is unique among discriminative motif finders in that it uses an informative Bayesian prior on protein motif columns, allowing it to incorporate prior knowledge of residue characteristics. We also introduce four, synthetic, discriminative motif discovery problems that are designed for evaluating discriminative motif finders in various biologically motivated contexts. We test DEME using these synthetic problems and on two biological problems: finding yeast transcription factor binding motifs in ChIP-chip data, and finding motifs that discriminate between groups of thermophilic and mesophilic orthologous proteins.</p> <p>Conclusion</p> <p>Using artificial data, we show that DEME is more effective than a non-discriminative approach when there are "decoy" motifs or when a variant of the motif is present in the "negative" sequences. With real data, we show that DEME is as good, but not better than non-discriminative algorithms at discovering yeast transcription factor binding motifs. We also show that DEME can find highly informative thermal-stability protein motifs. Binaries for the stand-alone program DEME is free for academic use and is available at <url>http://bioinformatics.org.au/deme/</url></p
    corecore