23,217 research outputs found

    A uniform approach to fundamental sequences and hierarchies

    Get PDF
    In this article we give a unifying approach to the theory of fundamental sequences and their related Hardy hierarchies of number-theoretic functions and we show the equivalence of the new approach with the classical one

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Complexity Bounds for Ordinal-Based Termination

    Full text link
    `What more than its truth do we know if we have a proof of a theorem in a given formal system?' We examine Kreisel's question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times. Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability Problems (RP 2014, 22-24 September 2014, Oxford

    Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies

    Full text link
    Combining algebro-geometric methods and factorization techniques for finite difference expressions we provide a complete and self-contained treatment of all real-valued quasi-periodic finite-gap solutions of both the Toda and Kac-van Moerbeke hierarchies. In order to obtain our principal new result, the algebro-geometric finite-gap solutions of the Kac-van Moerbeke hierarchy, we employ particular commutation methods in connection with Miura-type transformations which enable us to transfer whole classes of solutions (such as finite-gap solutions) from the Toda hierarchy to its modified counterpart, the Kac-van Moerbeke hierarchy, and vice versa.Comment: LaTeX, to appear in Memoirs of the Amer. Math. So

    Tracing evolutionary links between species

    Full text link
    The idea that all life on earth traces back to a common beginning dates back at least to Charles Darwin's {\em Origin of Species}. Ever since, biologists have tried to piece together parts of this `tree of life' based on what we can observe today: fossils, and the evolutionary signal that is present in the genomes and phenotypes of different organisms. Mathematics has played a key role in helping transform genetic data into phylogenetic (evolutionary) trees and networks. Here, I will explain some of the central concepts and basic results in phylogenetics, which benefit from several branches of mathematics, including combinatorics, probability and algebra.Comment: 18 pages, 6 figures (Invited review paper (draft version) for AMM

    The Asymptotic Cone of Teichm\"uller Space: Thickness and Divergence

    Get PDF
    We study the Asymptotic Cone of Teichm\"uller space equipped with the Weil-Petersson metric. In particular, we provide a characterization of the canonical finest pieces in the tree-graded structure of the asymptotic cone of Teichm\"uller space along the same lines as a similar characterization for right angled Artin groups by Behrstock-Charney and for mapping class groups by Behrstock-Kleiner-Minksy-Mosher. As a corollary of the characterization, we complete the thickness classification of Teichm\"uller spaces for all surfaces of finite type, thereby answering questions of Behrstock-Drutu, Behrstock-Drutu-Mosher, and Brock-Masur. In particular, we prove that Teichm\"uller space of the genus two surface with one boundary component (or puncture) can be uniquely characterized in the following two senses: it is thick of order two, and it has superquadratic yet at most cubic divergence. In addition, we characterize strongly contracting quasi-geodesics in Teichm\"uller space, generalizing results of Brock-Masur-Minsky. As a tool, we develop a complex of separating multicurves, which may be of independent interest.Comment: This paper comprises the main portion of the author's doctoral thesis, 54 page
    • …
    corecore