29,607 research outputs found

    A Nonmonotonic Sequent Calculus for Inferentialist Expressivists

    Get PDF
    I am presenting a sequent calculus that extends a nonmonotonic consequence relation over an atomic language to a logically complex language. The system is in line with two guiding philosophical ideas: (i) logical inferentialism and (ii) logical expressivism. The extension defined by the sequent rules is conservative. The conditional tracks the consequence relation and negation tracks incoherence. Besides the ordinary propositional connectives, the sequent calculus introduces a new kind of modal operator that marks implications that hold monotonically. Transitivity fails, but for good reasons. Intuitionism and classical logic can easily be recovered from the system

    Towards a Systematic Account of Different Semantics for Logic Programs

    Get PDF
    In [Hitzler and Wendt 2002, 2005], a new methodology has been proposed which allows to derive uniform characterizations of different declarative semantics for logic programs with negation. One result from this work is that the well-founded semantics can formally be understood as a stratified version of the Fitting (or Kripke-Kleene) semantics. The constructions leading to this result, however, show a certain asymmetry which is not readily understood. We will study this situation here with the result that we will obtain a coherent picture of relations between different semantics for normal logic programs.Comment: 20 page

    An Introduction to Mechanized Reasoning

    Get PDF
    Mechanized reasoning uses computers to verify proofs and to help discover new theorems. Computer scientists have applied mechanized reasoning to economic problems but -- to date -- this work has not yet been properly presented in economics journals. We introduce mechanized reasoning to economists in three ways. First, we introduce mechanized reasoning in general, describing both the techniques and their successful applications. Second, we explain how mechanized reasoning has been applied to economic problems, concentrating on the two domains that have attracted the most attention: social choice theory and auction theory. Finally, we present a detailed example of mechanized reasoning in practice by means of a proof of Vickrey's familiar theorem on second-price auctions

    Classical Mathematics for a Constructive World

    Full text link
    Interactive theorem provers based on dependent type theory have the flexibility to support both constructive and classical reasoning. Constructive reasoning is supported natively by dependent type theory and classical reasoning is typically supported by adding additional non-constructive axioms. However, there is another perspective that views constructive logic as an extension of classical logic. This paper will illustrate how classical reasoning can be supported in a practical manner inside dependent type theory without additional axioms. We will see several examples of how classical results can be applied to constructive mathematics. Finally, we will see how to extend this perspective from logic to mathematics by representing classical function spaces using a weak value monad.Comment: v2: Final copy for publicatio
    corecore