1,100 research outputs found

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Face Centered Image Analysis Using Saliency and Deep Learning Based Techniques

    Get PDF
    Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured objects categorization and recognition, human facial landmark detection and multitask biometrics. To implement object detection, a three-level saliency detection based on the self-similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP accommodates statistical methods to generate proto-background patches, followed by the second level that implements local contrast computation based on image self-similarity characteristics. At last, the spatial color distribution constraint is considered to realize the saliency detection. The outcome of the algorithm is a full resolution image with highlighted saliency objects and well-defined edges. In object recognition, the Adaptive Deconvolution Network (ADN) is implemented to categorize the objects extracted from saliency detection. To improve the system performance, L1/2 norm regularized ADN has been proposed and tested in different applications. The results demonstrate the efficiency and significance of the new structure. To fully understand the facial biometrics related activity contained in the image, the low rank matrix decomposition is introduced to help locate the landmark points on the face images. The natural extension of this work is beneficial in human facial expression recognition and facial feature parsing research. To facilitate the understanding of the detected facial image, the automatic facial image analysis becomes essential. We present a novel deeply learnt tree-structured face representation to uniformly model the human face with different semantic meanings. We show that the proposed feature yields unified representation in multi-task facial biometrics and the multi-task learning framework is applicable to many other computer vision tasks

    Inner and Inter Label Propagation: Salient Object Detection in the Wild

    Full text link
    In this paper, we propose a novel label propagation based method for saliency detection. A key observation is that saliency in an image can be estimated by propagating the labels extracted from the most certain background and object regions. For most natural images, some boundary superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the boundary labels based on an inner propagation scheme. For images of complex scenes, we further deploy a 3-cue-center-biased objectness measure to pick out and propagate foreground labels. A co-transduction algorithm is devised to fuse both boundary and objectness labels based on an inter propagation scheme. The compactness criterion decides whether the incorporation of objectness labels is necessary, thus greatly enhancing computational efficiency. Results on five benchmark datasets with pixel-wise accurate annotations show that the proposed method achieves superior performance compared with the newest state-of-the-arts in terms of different evaluation metrics.Comment: The full version of the TIP 2015 publicatio

    Visual Saliency Estimation and Its Applications

    Get PDF
    The human visual system can automatically emphasize some parts of the image and ignore the other parts when seeing an image or a scene. Visual Saliency Estimation (VSE) aims to imitate this functionality of the human visual system to estimate the degree of human attention attracted by different image regions and locate the salient object. The study of VSE will help us explore the way human visual systems extract objects from an image. It has wide applications, such as robot navigation, video surveillance, object tracking, self-driving, etc. The current VSE approaches on natural images models generic visual stimuli based on lower-level image features, e.g., locations, local/global contrast, and feature correlation. However, existing models still suffered from some drawbacks. First, these methods fail in the cases when the objects are near the image borders. Second, due to imperfect model assumptions, many methods cannot achieve good results when the images have complicated backgrounds. In this work, I focuses on solving these challenges on the natural images by proposing a new framework with more robust task-related priors, and I apply the framework to low-quality biomedical images. The new framework formulates VSE on natural images as a quadratic program (QP) problem. It proposes an adaptive center-based bias hypothesis to replace the most common image center-based center-bias, which is much more robust even when the objects are far away from the image center. Second, it models a new smoothness term to force similar color having similar saliency statistics, which is more robust than that based on region dissimilarity when the image has a complicated background or low contrast. The new approach achieves the best performance among 11 latest methods on three public datasets. Three approaches based on the framework by integrating both high-level domain-knowledge and robust low-level saliency assumptions are utilized to imitate the radiologists\u27 attention to detect breast tumors from breast ultrasound images
    • …
    corecore