48 research outputs found

    On the Computation of the Higher Order Statistics of the Channel Capacity over Generalized Fading Channels

    Full text link
    The higher-order statistics (HOS) of the channel capacity μn=E[logn(1+γend)]\mu_n=\mathbb{E}[\log^n(1+\gamma_{end})], where nNn\in\mathbb{N} denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments (i.e., the sum of the correlated noncentral chi-squared distributions / the correlated generalized Rician distributions). The mathematical formalism is illustrated by some numerical examples focussing on the correlated generalized fading environments.Comment: Submitted to IEEE Wireless Communications Letter, February 18, 201

    On the Calculation of the Incomplete MGF with Applications to Wireless Communications

    Get PDF
    (c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. DOI: 10.1109/TCOMM.2016.2626440The incomplete moment generating function (IMGF) has paramount relevance in communication theory, since it appears in a plethora of scenarios when analyzing the performance of communication systems. We here present a general method for calculating the IMGF of any arbitrary fading distribution. Then, we provide exact closed-form expressions for the IMGF of the very general κ-μ shadowed fading model, which includes the popular κ-μ, η-μ, Rician shadowed, and other classical models as particular cases. We illustrate the practical applicability of this result by analyzing several scenarios of interest in wireless communications: 1) physical layer security in the presence of an eavesdropper; 2) outage probability analysis with interference and background noise; 3) channel capacity with side information at the transmitter and the receiver; and 4) average bit-error rate with adaptive modulation, when the fading on the desired link can be modeled by any of the aforementioned distributions.Universidad de Málaga. Campus de Execelencia Internacional. Andalucía Tech

    MGF Approach to the Analysis of Generalized Two-Ray Fading Models

    Full text link
    We analyze a class of Generalized Two-Ray (GTR) fading channels that consist of two line of sight (LOS) components with random phase plus a diffuse component. We derive a closed form expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) for this model, which greatly simplifies its analysis. This expression arises from the observation that the GTR fading model can be expressed in terms of a conditional underlying Rician distribution. We illustrate the approach to derive simple expressions for statistics and performance metrics of interest such as the amount of fading, the level crossing rate, the symbol error rate, and the ergodic capacity in GTR fading channels. We also show that the effect of considering a more general distribution for the phase difference between the LOS components has an impact on the average SNR.Comment: 14 pages, 8 Figures and 2 Tables. This work has been accepted for publication at IEEE Transactions on Wireless Communications. Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected]

    Performance of Maximal Ratio Combiners over Correlated Nakagami-m Fading Channels with Arbitrary Fading Parameters

    Full text link
    In this letter, performance metrics of maximal ratio combiners (MRC) over correlated Nakagami-m fading are calculated with both arbitrary fading parameters and average powers. We derive the moment generating function (MGF) of the sum of correlated gamma variables with arbitrary fading parameters. Using the MGF-based approach, we obtain the variance of the signal-to-noise ratio (SNR) at the output of the combiner, the outage probability, the average symbol error rate for coherent multichannel reception, and the diversity gain. The results for an exponentially decaying model of the fading parameter are presented and discussed.Reig, J. (2008). Performance of Maximal Ratio Combiners over Correlated Nakagami-m Fading Channels with Arbitrary Fading Parameters. IEEE Transactions on Wireless Communications. 7(5):1441-1445. doi:10.1109/TWC.2008.060129S144114457
    corecore