20 research outputs found

    A unified framework for trapdoor-permutation-based sequential aggregate signatures

    Get PDF
    We give a framework for trapdoor-permutation-based sequential aggregate signatures (SAS) that unifies and simplifies prior work and leads to new results. The framework is based on ideal ciphers over large domains, which have recently been shown to be realizable in the random oracle model. The basic idea is to replace the random oracle in the full-domain-hash signature scheme with an ideal cipher. Each signer in sequence applies the ideal cipher, keyed by the message, to the output of the previous signer, and then inverts the trapdoor permutation on the result. We obtain different variants of the scheme by varying additional keying material in the ideal cipher and making different assumptions on the trapdoor permutation. In particular, we obtain the first scheme with lazy verification and signature size independent of the number of signers that does not rely on bilinear pairings. Since existing proofs that ideal ciphers over large domains can be realized in the random oracle model are lossy, our schemes do not currently permit practical instantiation parameters at a reasonable security level, and thus we view our contribution as mainly conceptual. However, we are optimistic tighter proofs will be found, at least in our specific application.https://eprint.iacr.org/2018/070.pdfAccepted manuscrip

    Post-quantum security of hash functions

    Get PDF
    The research covered in this thesis is dedicated to provable post-quantum security of hash functions. Post-quantum security provides security guarantees against quantum attackers. We focus on analyzing the sponge construction, a cryptographic construction used in the standardized hash function SHA3. Our main results are proving a number of quantum security statements. These include standard-model security: collision-resistance and collapsingness, and more idealized notions such as indistinguishability and indifferentiability from a random oracle. All these results concern quantum security of the classical cryptosystems. From a more high-level perspective we find new applications and generalize several important proof techniques in post-quantum cryptography. We use the polynomial method to prove quantum indistinguishability of the sponge construction. We also develop a framework for quantum game-playing proofs, using the recently introduced techniques of compressed random oracles and the One-way-To-Hiding lemma. To establish the usefulness of the new framework we also prove a number of quantum indifferentiability results for other cryptographic constructions. On the way to these results, though, we address an open problem concerning quantum indifferentiability. Namely, we disprove a conjecture that forms the basis of a no-go theorem for a version of quantum indifferentiability

    LNCS

    Get PDF
    This paper studies the concrete security of PRFs and MACs obtained by keying hash functions based on the sponge paradigm. One such hash function is KECCAK, selected as NIST’s new SHA-3 standard. In contrast to other approaches like HMAC, the exact security of keyed sponges is not well understood. Indeed, recent security analyses delivered concrete security bounds which are far from existing attacks. This paper aims to close this gap. We prove (nearly) exact bounds on the concrete PRF security of keyed sponges using a random permutation. These bounds are tight for the most relevant ranges of parameters, i.e., for messages of length (roughly) l ≤ min{2n/4, 2r} blocks, where n is the state size and r is the desired output length; and for l ≤ q queries (to the construction or the underlying permutation). Moreover, we also improve standard-model bounds. As an intermediate step of independent interest, we prove tight bounds on the PRF security of the truncated CBC-MAC construction, which operates as plain CBC-MAC, but only returns a prefix of the output

    Integral Distinguishers for Reduced-round Stribog

    Get PDF
    In January 2013, the Stribog hash function officially replaced GOST R 34.11-94 as the new Russian cryptographic hash standard GOST R 34.11-2012. Stribog is an AES-based primitive and is considered as an asymmetric reply to the new SHA-3 selected by NIST. In this paper we investigate the structural integral properties of reduced version of the Stribog compression function and its internal permutation. Specifically, we present a forward and backward higher order integrals that can be used to distinguish 4 and 3.5 rounds, respectively. Moreover, using the start from the middle approach, we combine the two proposed integrals to get 6.5-round and 7.5-round distinguishers for the internal permutation and 6-round and 7-round distinguishers for the compression function

    Indifferentiable Security Analysis of choppfMD, chopMD, a chopMDP, chopWPH, chopNI, chopEMD, chopCS, and chopESh Hash Domain Extensions

    Get PDF
    We provide simple and unified indifferentiable security analyses of choppfMD, chopMD, a chopMDP (where the permutation PP is to be xored with any non-zero constant.), chopWPH (the chopped version of Wide-Pipe Hash proposed in \cite{Lucks05}), chopEMD, chopNI, chopCS, chopESh hash domain extensions. Even though there are security analysis of them in the case of no-bit chopping (i.e., s=0s=0), there is no unified way to give security proofs. All our proofs in this paper follow the technique introduced in \cite{BeDaPeAs08}. These proofs are simple and easy to follow

    Tweaks and Keys for Block Ciphers: the TWEAKEY Framework

    Get PDF
    We propose the TWEAKEY framework with goal to unify the design of tweakable block ciphers and of block ciphers resistant to related-key attacks. Our framework is simple, extends the key-alternating construction, and allows to build a primitive with arbitrary tweak and key sizes, given the public round permutation (for instance, the AES round). Increasing the sizes renders the security analysis very difficult and thus we identify a subclass of TWEAKEY, that we name STK, which solves the size issue by the use of finite field multiplications on low hamming weight constants. We give very efficient instances of STK, in particular, a 128-bit tweak/key/state block cipher Deoxys-BC that is the first AES-based ad-hoc tweakable block cipher. At the same time, Deoxys-BC could be seen as a secure alternative to AES-256, which is known to be insecure in the related-key model. As another member of the TWEAKEY framework, we describe Kiasu-BC, which is a very simple and even more efficient tweakable variation of AES-128 when the tweak size is limited to 64 bits. In addition to being efficient, our proposals, compared to the previous schemes that use AES as a black box, offer security beyond the birthday bound. Deoxys-BC and Kiasu-BC represent interesting pluggable primitives for authenticated encryption schemes, for instance, OCB instantiated with Kiasu-BC runs at about 0.75 c/B on Intel Haswell. Our work can also be seen as advances on the topic of secure key schedule design for AES-like ciphers, describing several proposals in this direction
    corecore