11,174 research outputs found

    Higher-level Knowledge, Rational and Social Levels Constraints of the Common Model of the Mind

    Get PDF
    In his famous 1982 paper, Allen Newell [22, 23] introduced the notion of knowledge level to indicate a level of analysis, and prediction, of the rational behavior of a cognitive articial agent. This analysis concerns the investigation about the availability of the agent knowledge, in order to pursue its own goals, and is based on the so-called Rationality Principle (an assumption according to which "an agent will use the knowledge it has of its environment to achieve its goals" [22, p. 17]. By using the Newell's own words: "To treat a system at the knowledge level is to treat it as having some knowledge, some goals, and believing it will do whatever is within its power to attain its goals, in so far as its knowledge indicates" [22, p. 13]. In the last decades, the importance of the knowledge level has been historically and system- atically downsized by the research area in cognitive architectures (CAs), whose interests have been mainly focused on the analysis and the development of mechanisms and the processes governing human and (articial) cognition. The knowledge level in CAs, however, represents a crucial level of analysis for the development of such articial general systems and therefore deserves greater research attention [17]. In the following, we will discuss areas of broad agree- ment and outline the main problematic aspects that should be faced within a Common Model of Cognition [12]. Such aspects, departing from an analysis at the knowledge level, also clearly impact both lower (e.g. representational) and higher (e.g. social) levels

    Real-to-Virtual Domain Unification for End-to-End Autonomous Driving

    Full text link
    In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. More critically, all prior works fail to deal with the notorious domain shift if we were to merge data collected from different sources, which greatly hinders the model generalization ability. In this work, we address the above limitations by taking advantage of virtual data collected from driving simulators, and present DU-drive, an unsupervised real-to-virtual domain unification framework for end-to-end autonomous driving. It first transforms real driving data to its less complex counterpart in the virtual domain and then predicts vehicle control commands from the generated virtual image. Our framework has three unique advantages: 1) it maps driving data collected from a variety of source distributions into a unified domain, effectively eliminating domain shift; 2) the learned virtual representation is simpler than the input real image and closer in form to the "minimum sufficient statistic" for the prediction task, which relieves the burden of the compression phase while optimizing the information bottleneck tradeoff and leads to superior prediction performance; 3) it takes advantage of annotated virtual data which is unlimited and free to obtain. Extensive experiments on two public driving datasets and two driving simulators demonstrate the performance superiority and interpretive capability of DU-drive
    • …
    corecore