14,561 research outputs found

    Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck operators

    Full text link
    This paper presents a diffusion based probabilistic interpretation of spectral clustering and dimensionality reduction algorithms that use the eigenvectors of the normalized graph Laplacian. Given the pairwise adjacency matrix of all points, we define a diffusion distance between any two data points and show that the low dimensional representation of the data by the first few eigenvectors of the corresponding Markov matrix is optimal under a certain mean squared error criterion. Furthermore, assuming that data points are random samples from a density p(\x) = e^{-U(\x)} we identify these eigenvectors as discrete approximations of eigenfunctions of a Fokker-Planck operator in a potential 2U(\x) with reflecting boundary conditions. Finally, applying known results regarding the eigenvalues and eigenfunctions of the continuous Fokker-Planck operator, we provide a mathematical justification for the success of spectral clustering and dimensional reduction algorithms based on these first few eigenvectors. This analysis elucidates, in terms of the characteristics of diffusion processes, many empirical findings regarding spectral clustering algorithms.Comment: submitted to NIPS 200

    Unsupervised Feature Selection with Adaptive Structure Learning

    Full text link
    The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods

    A Convex Formulation for Spectral Shrunk Clustering

    Full text link
    Spectral clustering is a fundamental technique in the field of data mining and information processing. Most existing spectral clustering algorithms integrate dimensionality reduction into the clustering process assisted by manifold learning in the original space. However, the manifold in reduced-dimensional subspace is likely to exhibit altered properties in contrast with the original space. Thus, applying manifold information obtained from the original space to the clustering process in a low-dimensional subspace is prone to inferior performance. Aiming to address this issue, we propose a novel convex algorithm that mines the manifold structure in the low-dimensional subspace. In addition, our unified learning process makes the manifold learning particularly tailored for the clustering. Compared with other related methods, the proposed algorithm results in more structured clustering result. To validate the efficacy of the proposed algorithm, we perform extensive experiments on several benchmark datasets in comparison with some state-of-the-art clustering approaches. The experimental results demonstrate that the proposed algorithm has quite promising clustering performance.Comment: AAAI201

    Self-weighted Multiple Kernel Learning for Graph-based Clustering and Semi-supervised Classification

    Full text link
    Multiple kernel learning (MKL) method is generally believed to perform better than single kernel method. However, some empirical studies show that this is not always true: the combination of multiple kernels may even yield an even worse performance than using a single kernel. There are two possible reasons for the failure: (i) most existing MKL methods assume that the optimal kernel is a linear combination of base kernels, which may not hold true; and (ii) some kernel weights are inappropriately assigned due to noises and carelessly designed algorithms. In this paper, we propose a novel MKL framework by following two intuitive assumptions: (i) each kernel is a perturbation of the consensus kernel; and (ii) the kernel that is close to the consensus kernel should be assigned a large weight. Impressively, the proposed method can automatically assign an appropriate weight to each kernel without introducing additional parameters, as existing methods do. The proposed framework is integrated into a unified framework for graph-based clustering and semi-supervised classification. We have conducted experiments on multiple benchmark datasets and our empirical results verify the superiority of the proposed framework.Comment: Accepted by IJCAI 2018, Code is availabl
    • …
    corecore