1,166 research outputs found

    RecAD: Towards A Unified Library for Recommender Attack and Defense

    Full text link
    In recent years, recommender systems have become a ubiquitous part of our daily lives, while they suffer from a high risk of being attacked due to the growing commercial and social values. Despite significant research progress in recommender attack and defense, there is a lack of a widely-recognized benchmarking standard in the field, leading to unfair performance comparison and limited credibility of experiments. To address this, we propose RecAD, a unified library aiming at establishing an open benchmark for recommender attack and defense. RecAD takes an initial step to set up a unified benchmarking pipeline for reproducible research by integrating diverse datasets, standard source codes, hyper-parameter settings, running logs, attack knowledge, attack budget, and evaluation results. The benchmark is designed to be comprehensive and sustainable, covering both attack, defense, and evaluation tasks, enabling more researchers to easily follow and contribute to this promising field. RecAD will drive more solid and reproducible research on recommender systems attack and defense, reduce the redundant efforts of researchers, and ultimately increase the credibility and practical value of recommender attack and defense. The project is released at https://github.com/gusye1234/recad

    A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability

    Full text link
    Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to their great ability in modeling graph-structured data, GNNs are vastly used in various applications, including high-stakes scenarios such as financial analysis, traffic predictions, and drug discovery. Despite their great potential in benefiting humans in the real world, recent study shows that GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data and lack interpretability, which have risk of causing unintentional harm to the users and society. For example, existing works demonstrate that attackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph. GNNs trained on social networks may embed the discrimination in their decision process, strengthening the undesirable societal bias. Consequently, trustworthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users' trust in GNNs. In this paper, we give a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability. For each aspect, we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs. We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthiness

    Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks

    Full text link
    Graph Neural Networks (GNNs), a generalization of neural networks to graph-structured data, are often implemented using message passes between entities of a graph. While GNNs are effective for node classification, link prediction and graph classification, they are vulnerable to adversarial attacks, i.e., a small perturbation to the structure can lead to a non-trivial performance degradation. In this work, we propose Uncertainty Matching GNN (UM-GNN), that is aimed at improving the robustness of GNN models, particularly against poisoning attacks to the graph structure, by leveraging epistemic uncertainties from the message passing framework. More specifically, we propose to build a surrogate predictor that does not directly access the graph structure, but systematically extracts reliable knowledge from a standard GNN through a novel uncertainty-matching strategy. Interestingly, this uncoupling makes UM-GNN immune to evasion attacks by design, and achieves significantly improved robustness against poisoning attacks. Using empirical studies with standard benchmarks and a suite of global and target attacks, we demonstrate the effectiveness of UM-GNN, when compared to existing baselines including the state-of-the-art robust GCN

    Bkd-FedGNN: A Benchmark for Classification Backdoor Attacks on Federated Graph Neural Network

    Full text link
    Federated Graph Neural Network (FedGNN) has recently emerged as a rapidly growing research topic, as it integrates the strengths of graph neural networks and federated learning to enable advanced machine learning applications without direct access to sensitive data. Despite its advantages, the distributed nature of FedGNN introduces additional vulnerabilities, particularly backdoor attacks stemming from malicious participants. Although graph backdoor attacks have been explored, the compounded complexity introduced by the combination of GNNs and federated learning has hindered a comprehensive understanding of these attacks, as existing research lacks extensive benchmark coverage and in-depth analysis of critical factors. To address these limitations, we propose Bkd-FedGNN, a benchmark for backdoor attacks on FedGNN. Specifically, Bkd-FedGNN decomposes the graph backdoor attack into trigger generation and injection steps, and extending the attack to the node-level federated setting, resulting in a unified framework that covers both node-level and graph-level classification tasks. Moreover, we thoroughly investigate the impact of multiple critical factors in backdoor attacks on FedGNN. These factors are categorized into global-level and local-level factors, including data distribution, the number of malicious attackers, attack time, overlapping rate, trigger size, trigger type, trigger position, and poisoning rate. Finally, we conduct comprehensive evaluations on 13 benchmark datasets and 13 critical factors, comprising 1,725 experimental configurations for node-level and graph-level tasks from six domains. These experiments encompass over 8,000 individual tests, allowing us to provide a thorough evaluation and insightful observations that advance our understanding of backdoor attacks on FedGNN.The Bkd-FedGNN benchmark is publicly available at https://github.com/usail-hkust/BkdFedGCN

    Deceptive Fairness Attacks on Graphs via Meta Learning

    Full text link
    We study deceptive fairness attacks on graphs to answer the following question: How can we achieve poisoning attacks on a graph learning model to exacerbate the bias deceptively? We answer this question via a bi-level optimization problem and propose a meta learning-based framework named FATE. FATE is broadly applicable with respect to various fairness definitions and graph learning models, as well as arbitrary choices of manipulation operations. We further instantiate FATE to attack statistical parity and individual fairness on graph neural networks. We conduct extensive experimental evaluations on real-world datasets in the task of semi-supervised node classification. The experimental results demonstrate that FATE could amplify the bias of graph neural networks with or without fairness consideration while maintaining the utility on the downstream task. We hope this paper provides insights into the adversarial robustness of fair graph learning and can shed light on designing robust and fair graph learning in future studies.Comment: 23 pages, 11 table

    Robust Graph Neural Networks using Weighted Graph Laplacian

    Full text link
    Graph neural network (GNN) is achieving remarkable performances in a variety of application domains. However, GNN is vulnerable to noise and adversarial attacks in input data. Making GNN robust against noises and adversarial attacks is an important problem. The existing defense methods for GNNs are computationally demanding and are not scalable. In this paper, we propose a generic framework for robustifying GNN known as Weighted Laplacian GNN (RWL-GNN). The method combines Weighted Graph Laplacian learning with the GNN implementation. The proposed method benefits from the positive semi-definiteness property of Laplacian matrix, feature smoothness, and latent features via formulating a unified optimization framework, which ensures the adversarial/noisy edges are discarded and connections in the graph are appropriately weighted. For demonstration, the experiments are conducted with Graph convolutional neural network(GCNN) architecture, however, the proposed framework is easily amenable to any existing GNN architecture. The simulation results with benchmark dataset establish the efficacy of the proposed method, both in accuracy and computational efficiency. Code can be accessed at https://github.com/Bharat-Runwal/RWL-GNN.Comment: Accepted at IEEE International Conference on Signal Processing and Communications (SPCOM), 202
    • …
    corecore