5,128 research outputs found

    Real-time and fault tolerance in distributed control software

    Get PDF
    Closed loop control systems typically contain multitude of spatially distributed sensors and actuators operated simultaneously. So those systems are parallel and distributed in their essence. But mapping this parallelism onto the given distributed hardware architecture, brings in some additional requirements: safe multithreading, optimal process allocation, real-time scheduling of bus and network resources. Nowadays, fault tolerance methods and fast even online reconfiguration are becoming increasingly important. All those often conflicting requirements, make design and implementation of real-time distributed control systems an extremely difficult task, that requires substantial knowledge in several areas of control and computer science. Although many design methods have been proposed so far, none of them had succeeded to cover all important aspects of the problem at hand. [1] Continuous increase of production in embedded market, makes a simple and natural design methodology for real-time systems needed more then ever

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Requirements Engineering of Context-Aware Applications

    Get PDF
    Context-aware computing envisions a new generation of smart applications that have the ability to perpetually sense the user’s context and use these data to make adaptation decision in response to changes in the user’s context so as to provide timely and personalized services anytime and anywhere. Unlike the traditional distribution systems where the network topology is fixed and wired, context-aware computing systems are mostly based on wireless communication due to the mobility of the network nodes; hence the network topology is not fixed but changes dynamically in an unpredictable manner as nodes join and the leave network, in addition to the fact that wireless communication is unstable. These factors make the design and development of context-aware computing systems much more challenging, as the system requirements change depending on the context of use. The Unified Modelling Language (UML) is a graphical language commonly used to specify, visualize, construct, and document the artefacts of software-intensive systems. However, UML is an all-purpose modelling language and does not have notations to distinguish context-awareness requirements from other system requirements. This is critical for the specification, visualization, construction and documentation of context-aware computing systems because context-awareness requirements are highly important in these systems. This thesis proposes an extension of UML diagrams to cater for the specification, visualization, construction and documentation of context-aware computing systems where new notations are introduced to model context-awareness requirements distinctively from other system requirements. The contributions of this work can be summarized as follows: (i) A context-aware use case diagram is a new notion which merges into a single diagram the traditional use case diagram (that describes the functions of an application) and the use context diagram, which specifies the context information upon which the behaviours of these functions depend. (ii) A Novel notion known as a context-aware activity diagram is presented, which extends the traditional UML activity diagrams to enable the representation of context objects, context constraints and adaptation activities. Context constraints express conditions upon context object attributes that trigger adaptation activities; adaptation activities are activities that must be performed in response to specific changes in the system’s context. (iii) A novel notion known as the context-aware class diagram is presented, which extends the traditional UML class diagrams to enable the representation of context information that affect the behaviours of a class. A new relationship, called utilisation, between a UML class and a context class is used to model context objects; meaning that the behaviours of the UML class depend upon the context information represented by the context class. Hence a context-aware class diagram is a rich and expressive language that distinctively depicts both the structure of classes and that of the contexts upon which they depend. The pragmatics of the proposed approach are demonstrated using two real-world case studies

    Contract-Based Design of Dataflow Programs

    Get PDF
    Quality and correctness are becoming increasingly important aspects of software development, as our reliance on software systems in everyday life continues to increase. Highly complex software systems are today found in critical appliances such as medical equipment, cars, and telecommunication infrastructure. Failures in these kinds of systems may have disastrous consequences. At the same time, modern computer platforms are increasingly concurrent, as the computational capacity of modern CPUs is improved mainly by increasing the number of processor cores. Computer platforms are also becoming increasingly parallel, distributed and heterogeneous, often involving special processing units, such as graphics processing units (GPU) or digital signal processors (DSP) for performing specific tasks more efficiently than possible on general-purpose CPUs. These modern platforms allow implementing increasingly complex functionality in software. Cost efficient development of software that efficiently exploits the power of this type of platforms and at the same time ensures correctness is, however, a challenging task. Dataflow programming has become popular in development of safetycritical software in many domains in the embedded community. For instance, in the automotive domain, the dataflow language Simulink has become widely used in model-based design of control software. However, for more complex functionality, this model of computation may not be expressive enough. In the signal processing domain, more expressive, dynamic models of computation have attracted much attention. These models of computation have, however, not gained as significant uptake in safety-critical domains due to a great extent to that it is challenging to provide guarantees regarding e.g. timing or determinism under these more expressive models of computation. Contract-based design has become widespread to specify and verify correctness properties of software components. A contract consists of assumptions (preconditions) regarding the input data and guarantees (postconditions) regarding the output data. By verifying a component with respect to its contract, it is ensured that the output fulfils the guarantees, assuming that the input fulfils the assumptions. While contract-based verification of traditional object-oriented programs has been researched extensively, verification of asynchronous dataflow programs has not been researched to the same extent. In this thesis, a contract-based design framework tailored specifically to dataflow programs is proposed. The proposed framework supports both an extensive subset of the discrete-time Simulink synchronous language, as well as a more general, asynchronous and dynamic, dataflow language. The proposed contract-based verification techniques are automatic, only guided by user-provided invariants, and based on encoding dataflow programs in existing, mature verification tools for sequential programs, such as the Boogie guarded command language and its associated verifier. It is shown how dataflow programs, with components implemented in an expressive programming language with support for matrix computations, can be efficiently encoded in such a verifier. Furthermore, it is also shown that contract-based design can be used to improve runtime performance of dataflow programs by allowing more scheduling decisions to be made at compile-time. All the proposed techniques have been implemented in prototype tools and evaluated on a large number of different programs. Based on the evaluation, the methods were proven to work in practice and to scale to real-world programs.Kvalitet och korrekthet blir idag allt viktigare aspekter inom mjukvaruutveckling, dÄ vi i allt högre grad förlitar oss pÄ mjukvarusystem i vÄra vardagliga sysslor. Mycket komplicerade mjukvarusystem finns idag i kritiska tillÀmpningar sÄ som medicinsk utrustning, bilar och infrastruktur för telekommunikation. Fel som uppstÄr i de hÀr typerna av system kan ha katastrofala följder. Samtidigt utvecklas kapaciteten hos moderna datorplattformar idag frÀmst genom att öka antalet processorkÀrnor. DÀrtill blir datorplattformar allt mer parallella, distribuerade och heterogena, och innefattar ofta specialla processorer sÄ som grafikprocessorer (GPU) eller signalprocessorer (DSP) för att utföra specifika berÀkningar snabbare Àn vad som Àr möjligt pÄ vanliga processorer. Den hÀr typen av plattformar möjligör implementering av allt mer komplicerade berÀkningar i mjukvara. Kostnadseffektiv utveckling av mjukvara som effektivt utnyttjar kapaciteten i den hÀr typen av plattformar och samtidigt sÀkerstÀller korrekthet Àr emellertid en mycket utmanande uppgift. Dataflödesprogrammering har blivit ett populÀrt sÀtt att utveckla mjukvara inom flera omrÄden som innefattar sÀkerhetskritiska inbyggda datorsystem. Till exempel inom fordonsindustrin har dataflödessprÄket Simulink kommit att anvÀndas i bred utstrÀckning för modellbaserad design av kontrollsystem. För mer komplicerad funktionalitet kan dock den hÀr modellen för berÀkning vara för begrÀnsad betrÀffande vad som kan beksrivas. Inom signalbehandling har mera expressiva och dynamiska modeller för berÀkning attraherat stort intresse. De hÀr modellerna för berÀkning har ÀndÄ inte tagits i bruk i samma utstrÀckning inom sÀkerhetskritiska tillÀmpningar. Det hÀr beror till en stor del pÄ att det Àr betydligt svÄrare att garantera egenskaper gÀllande till exempel timing och determinism under sÄdana hÀr modeller för berÀkning. Kontraktbaserad design har blivit ett vanligt sÀtt att specifiera och verifiera korrekthetsegenskaper hos mjukvarukomponeneter. Ett kontrakt bestÄr av antaganden (förvillkor) gÀllande indata och garantier (eftervillkor) gÀllande utdata. Genom att verifiera en komponent gentemot sitt konktrakt kan man bevisa att utdatan uppfyller garantierna, givet att indatan uppfyller antagandena. Trots att kontraktbaserad verifiering i sig Àr ett mycket beforskat omrÄde, sÄ har inte verifiering av asynkrona dataflödesprogram beforskats i samma utstrÀckning. I den hÀr avhandlingen presenteras ett ramverk för kontraktbaserad design skrÀddarsytt för dataflödesprogram. Det föreslagna ramverket stödjer sÄ vÀl en stor del av det synkrona sprÄket. Simulink med diskret tid som ett mera generellt asynkront och dynamiskt dataflödessprÄk. De föreslagna kontraktbaserade verifieringsteknikerna Àr automatiska. Utöver kontraktets för- och eftervillkor ger anvÀndaren endast de invarianter som krÀvs för att möjliggöra verifieringen. Verifieringsteknikerna grundar sig pÄ att omkoda dataflödesprogram till input för existerande och beprövade verifieringsverktyg för sekventiella program sÄ som Boogie. Avhandlingen visar hur dataflödesprogram implementerade i ett expressivt programmeringssprÄk med inbyggt stöd för matrisoperationer effektivt kan omkodas till input för ett verifieringsverktyg som Boogie. Utöver detta visar avhandlingen ocksÄ att kontraktbaserad design ocksÄ kan förbÀttra prestandan hos dataflödesprogram i körningsskedet genom att möjliggöra flera schemalÀggningsbeslut redan i kompileringsskedet. Alla tekniker som presenteras i avhandlingen har implementerats i prototypverktyg och utvÀrderats pÄ en stor mÀngd olika program. UtvÀrderingen bevisar att teknikerna fungerar i praktiken och Àr tillrÀckligt skalbara för att ocksÄ fungera pÄ program av realistisk storlek

    A collaborative learning experience in modeling the requirements of teleoperated system for ship hull maintenance

    Get PDF
    This paper presents a join experience in modelling the requirements of the product line of teleoperated systems for ship hull maintenance, which are basically robotic systems used for ship maintenance operations, such as cleaning or painting the ship hull. It is proposed to specify the product line requirements through a feature model, a conceptual model, and a use case model, which together allow domain understanding, derivation of reusable product line requirements, and efficient decision-making in the specification of new systems developed in the product line. Action Research, a qualitative research method in software engineering, has been applied to define the collaborative research process

    Experimental Applications of Automatic Test Markup Language (ATML)

    Get PDF
    The authors describe challenging use-cases for Automatic Test Markup Language (ATML), and evaluate solutions. The first case uses ATML Test Results to deliver active features to support test procedure development and test flow, and bridging mixed software development environments. The second case examines adding attributes to Systems Modelling Language (SysML) to create a linkage for deriving information from a model to fill in an ATML document set. Both cases are outside the original concept of operations for ATML but are typical when integrating large heterogeneous systems with modular contributions from multiple disciplines

    Software Architecture Description & UML Workshop

    Get PDF

    A General Contingency Theory of Management

    Get PDF
    Recent formal recognition of situational influences on the management of complex organizations has led to an increasing number of contingency models, but a comprehensive and integrative theoretical framework for contingency management has been lacking. A General Contingency Theory (GCT) of Management is introduced as an overall framework that integrates the diverse process, quantitative and behavioral approaches to management; incorporates the environment; and begins to bridge the gap between management theory and practic

    Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation

    Full text link
    TensorFlow has been the most widely adopted Machine/Deep Learning framework. However, little exists in the literature that provides a thorough understanding of the capabilities which TensorFlow offers for the distributed training of large ML/DL models that need computation and communication at scale. Most commonly used distributed training approaches for TF can be categorized as follows: 1) Google Remote Procedure Call (gRPC), 2) gRPC+X: X=(InfiniBand Verbs, Message Passing Interface, and GPUDirect RDMA), and 3) No-gRPC: Baidu Allreduce with MPI, Horovod with MPI, and Horovod with NVIDIA NCCL. In this paper, we provide an in-depth performance characterization and analysis of these distributed training approaches on various GPU clusters including the Piz Daint system (6 on Top500). We perform experiments to gain novel insights along the following vectors: 1) Application-level scalability of DNN training, 2) Effect of Batch Size on scaling efficiency, 3) Impact of the MPI library used for no-gRPC approaches, and 4) Type and size of DNN architectures. Based on these experiments, we present two key insights: 1) Overall, No-gRPC designs achieve better performance compared to gRPC-based approaches for most configurations, and 2) The performance of No-gRPC is heavily influenced by the gradient aggregation using Allreduce. Finally, we propose a truly CUDA-Aware MPI Allreduce design that exploits CUDA kernels and pointer caching to perform large reductions efficiently. Our proposed designs offer 5-17X better performance than NCCL2 for small and medium messages, and reduces latency by 29% for large messages. The proposed optimizations help Horovod-MPI to achieve approximately 90% scaling efficiency for ResNet-50 training on 64 GPUs. Further, Horovod-MPI achieves 1.8X and 3.2X higher throughput than the native gRPC method for ResNet-50 and MobileNet, respectively, on the Piz Daint cluster.Comment: 10 pages, 9 figures, submitted to IEEE IPDPS 2019 for peer-revie
    • 

    corecore