1,095 research outputs found

    Spiking neural models & machine learning for systems neuroscience: Learning, Cognition and Behavior.

    Get PDF
    Learning, cognition and the ability to navigate, interact and manipulate the world around us by performing appropriate behavior are hallmarks of artificial as well as biological intelligence. In order to understand how intelligent behavior can emerge from computations of neural systems, this thesis suggests to consider and study learning, cognition and behavior simultaneously to obtain an integrative understanding. This involves building detailed functional computational models of nervous systems that can cope with sensory processing, learning, memory and motor control to drive appropriate behavior. The work further considers how the biological computational substrate of neurons, dendrites and action potentials can be successfully used as an alternative to current artificial systems to solve machine learning problems. It challenges the simplification of currently used rate-based artificial neurons, where computational power is sacrificed by mathematical convenience and statistical learning. To this end, the thesis explores single spiking neuron computations for cognition and machine learning problems as well as detailed functional networks thereof that can solve the biologically relevant foraging behavior in flying insects. The obtained results and insights are new and relevant for machine learning, neuroscience and computational systems neuroscience. The thesis concludes by providing an outlook how application of current machine learning methods can be used to obtain a statistical understanding of larger scale brain systems. In particular, by investigating the functional role of the cerebellar-thalamo-cortical system for motor control in primates

    Deep Learning Methods for 3D Aerial and Satellite Data

    Get PDF
    Recent advances in digital electronics have led to an overabundance of observations from electro-optical (EO) imaging sensors spanning high spatial, spectral and temporal resolution. This unprecedented volume, variety, and velocity is overwhelming our capacity to manage and translate that data into actionable information. Although decades of image processing research have taken the human out of the loop for many important tasks, the human analyst is still an irreplaceable link in the image exploitation chain, especially for more complex tasks requiring contextual understanding, memory, discernment, and learning. If knowledge discovery is to keep pace with the growing availability of data, new processing paradigms are needed in order to automate the analysis of earth observation imagery and ease the burden of manual interpretation. To address this gap, this dissertation advances fundamental and applied research in deep learning for aerial and satellite imagery. We show how deep learning---a computational model inspired by the human brain---can be used for (1) tracking, (2) classifying, and (3) modeling from a variety of data sources including full-motion video (FMV), Light Detection and Ranging (LiDAR), and stereo photogrammetry. First we assess the ability of a bio-inspired tracking method to track small targets using aerial videos. The tracker uses three kinds of saliency maps: appearance, location, and motion. Our approach achieves the best overall performance, including being the only method capable of handling long-term occlusions. Second, we evaluate the classification accuracy of a multi-scale fully convolutional network to label individual points in LiDAR data. Our method uses only the 3D-coordinates and corresponding low-dimensional spectral features for each point. Evaluated using the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of 81.6\%. Finally, we validate the prediction capability of our neighborhood-aware network to model the bare-earth surface of LiDAR and stereo photogrammetry point clouds. The network bypasses traditionally-used ground classifications and seamlessly integrate neighborhood features with point-wise and global features to predict a per point Digital Terrain Model (DTM). We compare our results with two widely used softwares for DTM extraction, ENVI and LAStools. Together, these efforts have the potential to alleviate the manual burden associated with some of the most challenging and time-consuming geospatial processing tasks, with implications for improving our response to issues of global security, emergency management, and disaster response

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Cortically coupled image computing

    Get PDF
    In the 1970s, researchers at the University of California started to investigate communication between humans and computers using neural signals, which lead to the emergence of brain- computer interfaces (BCIs). In the past 40 years, significant progress has been achieved in ap- plication areas such as neuroprosthetics and rehabilitation. BCIs have been recently applied to media analytics (e.g., image search and information retrieval) as we are surrounded by tremen- dous amounts of media information today. A cortically coupled computer vision (CCCV) sys- tem is a type of BCI that exposes users to high throughput image streams via the rapid serial visual presentation (RSVP) protocol. Media analytics has also been transformed through the enormous advances in artificial intelligence (AI) in recent times. Understanding and presenting the nature of the human-AI relationship will play an important role in our society in the future. This thesis explores two lines of research in the context of traditional BCIs and AI. Firstly, we study and investigate the fundamental processing methods such as feature extraction and clas- sification for CCCV systems. Secondly, we discuss the feasibility of interfacing neural systems with AI technology through CCCV, an area we identify as neuro-AI interfacing. We have made two electroencephalography (EEG) datasets available to the community that support our inves- tigation of these two research directions. These are the neurally augmented image labelling strategies (NAILS) dataset and the neural indices for face perception analysis (NIFPA) dataset, which are introduced in Chapter 2. The first line of research focuses on studying and investigating fundamental processing methods for CCCV. In Chapter 3, we present a review on recent developments in processing methods for CCCV. This review introduces CCCV related components, specifically the RSVP experimental setup, RSVP-EEG phenomena such as the P300 and N170, evaluation metrics, feature extraction and classification. We then provide a detailed study and an analysis on spatial filtering pipelines in Chapter 4, which are the most widely used feature extraction and reduction methods in a CCCV system. In this context, we propose a spatial filtering technique named multiple time window LDA beamformers (MTWLB) and compare it to two other well-known techniques in the literature, namely xDAWN and common spatial patterns (CSP). Importantly, we demonstrate the efficacy of MTWLB for time-course source signal reconstruction compared to existing methods, which we then use as a source signal information extraction method to support a neuro-AI interface. This will be further discussed in this thesis i.e. Chapter 6 and Chapter 7. The latter part of this thesis investigates the feasibility of neuro-AI interfaces. We present two research studies which contribute to this direction. Firstly, we explore the idea of neuro- AI interfaces based on stimulus and neural systems i.e., observation of the effects of stimuli produced by different AI systems on neural signals. We use generative adversarial networks (GANs) to produce image stimuli in this case as GANs are able to produce higher quality images compared to other deep generative models. Chapter 5 provides a review on GAN-variants in terms of loss functions and architectures. In Chapter 6, we design a comprehensive experiment to verify the effects of images produced by different GANs on participants’ EEG responses. In this we propose a biologically-produced metric called Neuroscore for evaluating GAN per- formance. We highlight the consistency between Neuroscore and human perceptual judgment, which is superior to conventional metrics (i.e., Inception Score (IS), Fre ́chet Inception Distance (FID) and Kernel Maximum Mean Discrepancy (MMD) discussed in this thesis). Secondly, in order to generalize Neuroscore, we explore the use of a neuro-AI interface to help convolutional neural networks (CNNs) predict a Neuroscore with only an image as the input. In this scenario, we feed the reconstructed P300 source signals to the intermediate layer as supervisory informa- tion. We demonstrate that including biological neural information can improve the prediction performance for our proposed CNN models and the predicted Neuroscore is highly correlated with the real Neuroscore (as directly calculated from human neural signals)

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    Towards Sensorimotor Coupling of a Spiking Neural Network and Deep Reinforcement Learning for Robotics Application

    Get PDF
    Deep reinforcement learning augments the reinforcement learning framework and utilizes the powerful representation of deep neural networks. Recent works have demonstrated the great achievements of deep reinforcement learning in various domains including finance,medicine, healthcare, video games, robotics and computer vision.Deep neural network was started with multi-layer perceptron (1stgeneration) and developed to deep neural networks (2ndgeneration)and it is moving forward to spiking neural networks which are knownas3rdgeneration of neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically-realistic models of neurons to carry out computation. In this thesis, we first provide a comprehensive review on both spiking neural networks and deep reinforcement learning with emphasis on robotic applications. Then we will demonstrate how to develop a robotics application for context-aware scene understanding to perform sensorimotor coupling. Our system contains two modules corresponding to scene understanding and robotic navigation. The first module is implemented as a spiking neural network to carry out semantic segmentation to understand the scene in front of the robot. The second module provides a high-level navigation command to robot, which is considered as an agent and implemented by online reinforcement learning. The module was implemented with biologically plausible local learning rule that allows the agent to adopt quickly to the environment. To benchmark our system, we have tested the first module on Oxford-IIIT Pet dataset and the second module on the custom-made Gym environment. Our experimental results have proven that our system is able present the competitive results with deep neural network in segmentation task and adopts quickly to the environment

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments
    corecore