8,096 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Twenty-five years of sensor array and multichannel signal processing: a review of progress to date and potential research directions

    Get PDF
    In this article, a general introduction to the area of sensor array and multichannel signal processing is provided, including associated activities of the IEEE Signal Processing Society (SPS) Sensor Array and Multichannel (SAM) Technical Committee (TC). The main technological advances in five SAM subareas made in the past 25 years are then presented in detail, including beamforming, direction-of-arrival (DOA) estimation, sensor location optimization, target/source localization based on sensor arrays, and multiple-input multiple-output (MIMO) arrays. Six recent developments are also provided at the end to indicate possible promising directions for future SAM research, which are graph signal processing (GSP) for sensor networks; tensor-based array signal processing, quaternion-valued array signal processing, 1-bit and noncoherent sensor array signal processing, machine learning and artificial intelligence (AI) for sensor arrays; and array signal processing for next-generation communication systems

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Segmentation of Pathology Images: A Deep Learning Strategy with Annotated Data

    Get PDF
    Cancer has significantly threatened human life and health for many years. In the clinic, histopathology image segmentation is the golden stand for evaluating the prediction of patient prognosis and treatment outcome. Generally, manually labelling tumour regions in hundreds of high-resolution histopathological images is time-consuming and expensive for pathologists. Recently, the advancements in hardware and computer vision have allowed deep-learning-based methods to become mainstream to segment tumours automatically, significantly reducing the workload of pathologists. However, most current methods rely on large-scale labelled histopathological images. Therefore, this research studies label-effective tumour segmentation methods using deep-learning paradigms to relieve the annotation limitations. Chapter 3 proposes an ensemble framework for fully-supervised tumour segmentation. Usually, the performance of an individual-trained network is limited by significant morphological variances in histopathological images. We propose a fully-supervised learning ensemble fusion model that uses both shallow and deep U-Nets, trained with images of different resolutions and subsets of images, for robust predictions of tumour regions. Noise elimination is achieved with Convolutional Conditional Random Fields. Two open datasets are used to evaluate the proposed method: the ACDC@LungHP challenge at ISBI2019 and the DigestPath challenge at MICCAI2019. With a dice coefficient of 79.7 %, the proposed method takes third place in ACDC@LungHP. In DigestPath 2019, the proposed method achieves a dice coefficient 77.3 %. Well-annotated images are an indispensable part of training fully-supervised segmentation strategies. However, large-scale histopathology images are hardly annotated finely in clinical practice. It is common for labels to be of poor quality or for only a few images to be manually marked by experts. Consequently, fully-supervised methods cannot perform well in these cases. Chapter 4 proposes a self-supervised contrast learning for tumour segmentation. A self-supervised cancer segmentation framework is proposed to reduce label dependency. An innovative contrastive learning scheme is developed to represent tumour features based on unlabelled images. Unlike a normal U-Net, the backbone is a patch-based segmentation network. Additionally, data augmentation and contrastive losses are applied to improve the discriminability of tumour features. A convolutional Conditional Random Field is used to smooth and eliminate noise. Three labelled, and fourteen unlabelled images are collected from a private skin cancer dataset called BSS. Experimental results show that the proposed method achieves better tumour segmentation performance than other popular self-supervised methods. However, by evaluated on the same public dataset as chapter 3, the proposed self-supervised method is hard to handle fine-grained segmentation around tumour boundaries compared to the supervised method we proposed. Chapter 5 proposes a sketch-based weakly-supervised tumour segmentation method. To segment tumour regions precisely with coarse annotations, a sketch-supervised method is proposed, containing a dual CNN-Transformer network and a global normalised class activation map. CNN-Transformer networks simultaneously model global and local tumour features. With the global normalised class activation map, a gradient-based tumour representation can be obtained from the dual network predictions. We invited experts to mark fine and coarse annotations in the private BSS and the public PAIP2019 datasets to facilitate reproducible performance comparisons. Using the BSS dataset, the proposed method achieves 76.686 % IOU and 86.6 % Dice scores, outperforming state-of-the-art methods. Additionally, the proposed method achieves a Dice gain of 8.372 % compared with U-Net on the PAIP2019 dataset. The thesis presents three approaches to segmenting cancers from histology images: fully-supervised, unsupervised, and weakly supervised methods. This research effectively segments tumour regions based on histopathological annotations and well-designed modules. Our studies comprehensively demonstrate label-effective automatic histopathological image segmentation. Experimental results prove that our works achieve state-of-the-art segmentation performances on private and public datasets. In the future, we plan to integrate more tumour feature representation technologies with other medical modalities and apply them to clinical research

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    DATA AUGMENTATION FOR SYNTHETIC APERTURE RADAR USING ALPHA BLENDING AND DEEP LAYER TRAINING

    Get PDF
    Human-based object detection in synthetic aperture RADAR (SAR) imagery is complex and technical, laboriously slow but time critical—the perfect application for machine learning (ML). Training an ML network for object detection requires very large image datasets with imbedded objects that are accurately and precisely labeled. Unfortunately, no such SAR datasets exist. Therefore, this paper proposes a method to synthesize wide field of view (FOV) SAR images by combining two existing datasets: SAMPLE, which is composed of both real and synthetic single-object chips, and MSTAR Clutter, which is composed of real wide-FOV SAR images. Synthetic objects are extracted from SAMPLE using threshold-based segmentation before being alpha-blended onto patches from MSTAR Clutter. To validate the novel synthesis method, individual object chips are created and classified using a simple convolutional neural network (CNN); testing is performed against the measured SAMPLE subset. A novel technique is also developed to investigate training activity in deep layers. The proposed data augmentation technique produces a 17% increase in the accuracy of measured SAR image classification. This improvement shows that any residual artifacts from segmentation and blending do not negatively affect ML, which is promising for future use in wide-area SAR synthesis.Outstanding ThesisMajor, United States Air ForceApproved for public release. Distribution is unlimited

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Graph-based Algorithm Unfolding for Energy-aware Power Allocation in Wireless Networks

    Full text link
    We develop a novel graph-based trainable framework to maximize the weighted sum energy efficiency (WSEE) for power allocation in wireless communication networks. To address the non-convex nature of the problem, the proposed method consists of modular structures inspired by a classical iterative suboptimal approach and enhanced with learnable components. More precisely, we propose a deep unfolding of the successive concave approximation (SCA) method. In our unfolded SCA (USCA) framework, the originally preset parameters are now learnable via graph convolutional neural networks (GCNs) that directly exploit multi-user channel state information as the underlying graph adjacency matrix. We show the permutation equivariance of the proposed architecture, which is a desirable property for models applied to wireless network data. The USCA framework is trained through a stochastic gradient descent approach using a progressive training strategy. The unsupervised loss is carefully devised to feature the monotonic property of the objective under maximum power constraints. Comprehensive numerical results demonstrate its generalizability across different network topologies of varying size, density, and channel distribution. Thorough comparisons illustrate the improved performance and robustness of USCA over state-of-the-art benchmarks.Comment: Published in IEEE Transactions on Wireless Communication

    Multimodal spatio-temporal deep learning framework for 3D object detection in instrumented vehicles

    Get PDF
    This thesis presents the utilization of multiple modalities, such as image and lidar, to incorporate spatio-temporal information from sequence data into deep learning architectures for 3Dobject detection in instrumented vehicles. The race to autonomy in instrumented vehicles or self-driving cars has stimulated significant research in developing autonomous driver assistance systems (ADAS) technologies related explicitly to perception systems. Object detection plays a crucial role in perception systems by providing spatial information to its subsequent modules; hence, accurate detection is a significant task supporting autonomous driving. The advent of deep learning in computer vision applications and the availability of multiple sensing modalities such as 360° imaging, lidar, and radar have led to state-of-the-art 2D and 3Dobject detection architectures. Most current state-of-the-art 3D object detection frameworks consider single-frame reference. However, these methods do not utilize temporal information associated with the objects or scenes from the sequence data. Thus, the present research hypothesizes that multimodal temporal information can contribute to bridging the gap between 2D and 3D metric space by improving the accuracy of deep learning frameworks for 3D object estimations. The thesis presents understanding multimodal data representations and selecting hyper-parameters using public datasets such as KITTI and nuScenes with Frustum-ConvNet as a baseline architecture. Secondly, an attention mechanism was employed along with convolutional-LSTM to extract spatial-temporal information from sequence data to improve 3D estimations and to aid the architecture in focusing on salient lidar point cloud features. Finally, various fusion strategies are applied to fuse the modalities and temporal information into the architecture to assess its efficacy on performance and computational complexity. Overall, this thesis has established the importance and utility of multimodal systems for refined 3D object detection and proposed a complex pipeline incorporating spatial, temporal and attention mechanisms to improve specific, and general class accuracy demonstrated on key autonomous driving data sets

    Modeling biological face recognition with deep convolutional neural networks

    Full text link
    Deep convolutional neural networks (DCNNs) have become the state-of-the-art computational models of biological object recognition. Their remarkable success has helped vision science break new ground and recent efforts have started to transfer this achievement to research on biological face recognition. In this regard, face detection can be investigated by comparing face-selective biological neurons and brain areas to artificial neurons and model layers. Similarly, face identification can be examined by comparing in vivo and in silico multidimensional "face spaces". In this review, we summarize the first studies that use DCNNs to model biological face recognition. On the basis of a broad spectrum of behavioral and computational evidence, we conclude that DCNNs are useful models that closely resemble the general hierarchical organization of face recognition in the ventral visual pathway and the core face network. In two exemplary spotlights, we emphasize the unique scientific contributions of these models. First, studies on face detection in DCNNs indicate that elementary face selectivity emerges automatically through feedforward processing even in the absence of visual experience. Second, studies on face identification in DCNNs suggest that identity-specific experience and generative mechanisms facilitate this particular challenge. Taken together, as this novel modeling approach enables close control of predisposition (i.e., architecture) and experience (i.e., training data), it may be suited to inform long-standing debates on the substrates of biological face recognition.Comment: 41 pages, 2 figures, 1 tabl
    • 

    corecore