1,448 research outputs found

    Flexible human-robot cooperation models for assisted shop-floor tasks

    Get PDF
    The Industry 4.0 paradigm emphasizes the crucial benefits that collaborative robots, i.e., robots able to work alongside and together with humans, could bring to the whole production process. In this context, an enabling technology yet unreached is the design of flexible robots able to deal at all levels with humans' intrinsic variability, which is not only a necessary element for a comfortable working experience for the person but also a precious capability for efficiently dealing with unexpected events. In this paper, a sensing, representation, planning and control architecture for flexible human-robot cooperation, referred to as FlexHRC, is proposed. FlexHRC relies on wearable sensors for human action recognition, AND/OR graphs for the representation of and reasoning upon cooperation models, and a Task Priority framework to decouple action planning from robot motion planning and control.Comment: Submitted to Mechatronics (Elsevier

    Occupational health and safety issues in human-robot collaboration: State of the art and open challenges

    Get PDF
    Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity

    Α Behavior Trees-based architecture towards operation planning in hybrid manufacturing

    Get PDF
    In modern manufacturing, the capability of process scheduling and task allocation is a major feature for the proper organization of complex production schedules. More particularly, the case of human-robot collaboration within assembly lines is considered as a quite challenging field, where an efficient process scheduling can reduce products’ delivery times, increasing in parallel its quality. The purpose of this paper is to propose an approach focusing on operation planning for Human-Robot Collaborative processes that consist of many tasks and multiple resources, such as the assembly of large-scale parts. The implementation of the Human-Robot Operation Planning (HROP) module is presented, which aim at the allocation of multiple operations between multiple and different types of resources. This development’s main pillar is a dynamic decision-making logic that combines both constraints, that exclude resources from the evaluation, as well as mathematical criteria, that provide finally a specific solution. The HROP particularity is that it is developed under the Behavior Trees (BT) architecture. For the validation of the proposed approach, a case study under a real industrial environment of the automotive industry is presented, based on the assembly of large-scale parts, such as buses, in a hybrid cell of both human operators and multi-type robots

    a human in the loop cyber physical system for collaborative assembly in smart manufacturing

    Get PDF
    Abstract Industry 4.0 rose with the introduction of cyber-physical systems (CPS) and Internet of things (IoT) inside manufacturing systems. CPS represent self-controlled physical processes, having tight networking capabilities and efficient interfaces for human interaction. The interactive dimension of CPS reaches its maximum when defined in terms of natural human-machine interfaces (NHMI), i.e., those reducing the technological barriers required for the interaction. This paper presents a NHMI bringing the human decision-making capabilities inside the cybernetic control loop of a smart manufacturing assembly system. The interface allows to control, coordinate and cooperate with an industrial cobot during the task execution

    An approach based on VR to design industrial human-robot collaborative workstations

    Get PDF
    This paper presents an integrated approach for the design of human-robot collaborative workstations in industrial shop floors. In particular, the paper presents how to use virtual reality (VR) technologies to support designers in the creation of interactive workstation prototypes and in early validation of design outcomes. VR allows designers to consider and evaluate in advance the overall user experience, adopting a user-centered perspective. The proposed approach relies on two levels: the first allows designers to have an automatic generation and organization of the workstation physical layout in VR, starting from a conceptual description of its functionalities and required tools; the second aims at supporting designers during the design of human-machine interfaces (HMIs) by interaction mapping, HMI prototyping and testing in VR. The proposed approach has been applied on two realistic industrial case studies related to the design of an intensive warehouse and a collaborative assembly workstation for automotive industry, respectively. The two case studies demonstrate how the approach is suited for early prototyping of complex environments and human-machine interactions by taking into account the user experience from the early phases of design
    • …
    corecore