7,946 research outputs found

    On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

    Full text link
    Recently, Gupta et.al. [GKKS2013] proved that over Q any nO(1)n^{O(1)}-variate and nn-degree polynomial in VP can also be computed by a depth three ΣΠΣ\Sigma\Pi\Sigma circuit of size 2O(nlog3/2n)2^{O(\sqrt{n}\log^{3/2}n)}. Over fixed-size finite fields, Grigoriev and Karpinski proved that any ΣΠΣ\Sigma\Pi\Sigma circuit that computes DetnDet_n (or PermnPerm_n) must be of size 2Ω(n)2^{\Omega(n)} [GK1998]. In this paper, we prove that over fixed-size finite fields, any ΣΠΣ\Sigma\Pi\Sigma circuit for computing the iterated matrix multiplication polynomial of nn generic matrices of size n×nn\times n, must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The importance of this result is that over fixed-size fields there is no depth reduction technique that can be used to compute all the nO(1)n^{O(1)}-variate and nn-degree polynomials in VP by depth 3 circuits of size 2o(nlogn)2^{o(n\log n)}. The result [GK1998] can only rule out such a possibility for depth 3 circuits of size 2o(n)2^{o(n)}. We also give an example of an explicit polynomial (NWn,ϵ(X)NW_{n,\epsilon}(X)) in VNP (not known to be in VP), for which any ΣΠΣ\Sigma\Pi\Sigma circuit computing it (over fixed-size fields) must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The polynomial we consider is constructed from the combinatorial design. An interesting feature of this result is that we get the first examples of two polynomials (one in VP and one in VNP) such that they have provably stronger circuit size lower bounds than Permanent in a reasonably strong model of computation. Next, we prove that any depth 4 ΣΠ[O(n)]ΣΠ[n]\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]} circuit computing NWn,ϵ(X)NW_{n,\epsilon}(X) (over any field) must be of size 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)}. To the best of our knowledge, the polynomial NWn,ϵ(X)NW_{n,\epsilon}(X) is the first example of an explicit polynomial in VNP such that it requires 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)} size depth four circuits, but no known matching upper bound

    Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part I: template-based generic programming

    Full text link
    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering

    Equitable (d,m)(d,m)-edge designs

    Get PDF
    The paper addresses design of experiments for classifying the input factors of a multi-variate function into negligible, linear and other (non-linear/interaction) factors. We give constructive procedures for completing the definition of the clustered designs proposed Morris 1991, that become defined for arbitrary number of input factors and desired clusters' multiplicity. Our work is based on a representation of subgraphs of the hyper-cube by polynomials that allows the formal verification of the designs' properties. Ability to generate these designs in a systematic manner opens new perspectives for the characterisation of the behaviour of the function's derivatives over the input space that may offer increased discrimination
    corecore